Bihar Engineering University, Patna VIIIth Semester Examination - 2023

Course	. P. Taal	VIII Semester Exa	mination - 2023	
Code	. D. Tech			Time: 03 Hours
Code:	102802	Subject: Design of Tra	nsmission Systems	Full Marks: 70
Instruc	tions:-			
(i) Th	e marks	are indicated in the right hand mani-		
Gi) Th	iere are	NINE questions in this	1.	
Gii) Ar	towns El	White questions in this paper.		
(iii) AL	tempt r I	VE questions in all.		
(10) Q	uestion A	to. I is compulsory.		
(v) St	andard a	lata book is allowed.		1-
Q.1 (Choose t	he correct answer of the following (A)	w soven question only).	$12 \times 7 = 141$
(a) Th	he width of the pulley should be	y seven question only).	- <u>S</u>
	(i)	equal to the width of belt	(ii) less than the width (fhelt G
	(iii) greater than the width of belt	(iv) none of the above	and a start
(b) Th	e included angle for the V-belt is usual	ly lies in the range of	00
	(i)	20° - 30°	(ii) 30°- 40°	81
	(iii	$40^{\circ} - 60^{\circ}$.	(iv) 60° 80° C	3-
((c) A	brake commonly used in motor care is	(11)00-00 20	
	(i)	shoe brake	(ii) hand hasta	
	(iii) band and block brake	(ii) band brake	
((d) Th	e size of gear is usually encoded by	(iv) internatexpanding t	brake
	(i)	Dressure angle	an idea in the second	
	(iii) circular nitch	(i) pitch circle diameter	-
((e) Th	wire rone makes contact at	(iv) diametral pitch	
	(i)	bottom of amount of the set	V	
	Gii	sides and better of me pulley	(11) sides of groove of the	he pulley
	(f) W	high one of the following in the pull	ey (iii) anywhere in the gro	pove of the pulley
20	(1)	Crossed flat halt drive	rive?	
	(1)	What drive	(ii) Rope drive	
	(a) In	i) v-Belt arive	(iv) Chain drive	
5	(g) III are	the number of the diago on the	the number of discs on the	driving shaft and n2
	su	urfaces will be		
	(i)	n1+ n2	(ii) = 1 (= 2 - 1	
	(iii	$0 n_{1} + n_{2} + 1$	$(n) n_1 + n_2 - 1$	
((h) In	helical gears, the distance between simi	(iv) none of these	
	pit	pitch cylinders normal to the teeth is called		
	-(1)	normal pitch	(ii) avial pitch	
	J (iii) diametral pitch	(iv) module	
X	i) Th	e root angle of a bevel gear is equal to:	(w) module	
,GX	(i)	pitch angle - addendum angle	(ii) nitch angle i a th	
N	(iii) pitch angle - dedendum angle	(ii) pitch angle + addendu	m angle
) (j) In v	worm gears, the angle between the tange	(iv) pitch angle + dedendu	im angle
	the	plane normal to the axis of worm is call	ed to the thread helix on the	pitch cylinder and
	(i)	pressure angle	(ii) lead angle	
	(iii)	helix angle	(iv) friction angle	
			() menon angle	
Q.2 (a	a) Two	pulleys, one 400 mm diameter and di	a athe and	
	chaf	to 2 m and the statisticity and the	ie other 200 mm diamete	COD manufillat

[7] shafts 2 m apart are connected by a crossed belt. Find the length of the belt required and the angle of contact between the belt and each pulley. What power can be transmitted by the belt when the large pulley rotates at 200 rev/min, if the maximum permissible tension in the belt is 2 kN, and the coefficient of friction between the belt and pulley is 0.25?

Discuss the different types of belts and their material used for power transmission in **(b**) [7] detail.

0.3 Answer the following:

- How does the function of a brake differ from that of a clutch? (i)
- Why it is necessary to dissipate the heat generated when clutches operate? (ii)
- What do you mean by self energizing brake and self locking brake? (iii)
- Discuss in short about internal expanding brake. (iv)

Q.4 Define the following terms with respect to bevel gears:

(i) Pitch angle

- (ii) Pitch diameter
- (iii) Cone distance
- (v) Dedendum angle
- (iv) Addendum angle (vi) Outside or addendum cone diameter

[3.5x4=14]

 $[2 \times 7=14]$

[2 x 7=14]

[3.5x4=14]

N.S.

- (vii) Inside or dedendum cone diameter
- Q.5 A pair of bevel gears connect two shafts at right angles and transmits 9 kW. Determine the [14] required module and gear diameters for the following specifications:

Particulars	Pinion	Cear
Number of teeth	21	(2)60
Material	Semi-steel	- Grev cast Iron
Brinell hardness	200	160
Allowable static stress	85 MPa	55 MPa
Speed	1200 r.p.m	420 s.p.m
Tooth profile	14.5° composite	14.5° composito

Check the gears for dynamic and wear loads.

- Define the following term with respect to worm gear: Q.6
 - (i) Axial pitch (ii) Lead angle
 - (iii) Tooth pressure angle (iv) Normal pitch
 - (y) Velocity ratio (vi) Helix angle
 - (vii) Efficiency of worm gearing
- Q.7 Write short notes on the following:
 - (i) Discuss the purpose of housing of gear box
 - (ii) Discuss why geometric progression is selected in machine tool drives
 - (iii) What is ray-diagram of gear box? Explain in detail.
 - (iv) What is step ratio? Explain in detail.

Design a nine speed gearbox for a machine to provide speeds ranging from 100 r.p.m to 1500 r.p.m. The input is from a motor of 5 kW at 1440 r.p.m. Assume any [7]

A multiple disc clutch employs 3 steel and 2 bronze discs having outer diameter 300 mm and inner diameter 200 mm. For a coefficient of friction of 0.22, find the axial [7] pressure and the power transmitted at 750 r.p.m., if the normal unit pressure is 0.13 N/mm². Also find the axial pressure of the unit normal pressure, if this clutch transmits 22 kW at 1500 r.p.m

Q.9 Define the following terms related to cams:

e circle