	<u>Bakhtiyarpur Co</u>	<u>llege of Engineer</u>	ing E	<u> Bakhtiyarpur</u>
Academic Session	: 2020-2021(Odd Semester)	Semester	:	5 th
Branch	: CS	Name of Subject	:	Formal Language and Automata Theor
Course	: B.Tech.	Subject Code	:	051611
Groups	: CS-51	Name of Faculty I	Memb	er: Ajeet Kumar

Lecture No.	Topics to be covered	Planned Date of Completion	Book and page no.	
Module 1 Introdu	ction, Regular languages and finite automata			
1	Terminology: Alphabet, languages and grammarsT1: 17-20			
2	productions and derivation		T1: 21-24	
3	Chomsky hierarchy of languages.		T1:305-307	
4	Deterministic Finite Automata (DFA)		T1:37-41	
5	Nondeterministic finite automata (NFA) and equivalence with DFA,		T1:46-58	
6	Minimization of finite automata.		T1:66-68	
7	Regular expressions and languages		T1: 74-81	
8	Deterministic Finite Automata (DFA) and equivalence with regular expressions		T1: 82-88	
9	regular grammars and equivalence with finite automata		T1: 89-97	

10	properties of regular languages	T1: 101-105		
11	pumping lemma for regular languages	T1: 117-119		
12	Moore and Mealy Machine	T1:377-392		
Module 2 Context	-free languages and pushdown automata			
13	Context-free grammars (CFG)	T1: 129-131		
14	Context-free languages (CFL)	T1:131-134		
15	parse trees	T1:134-137		
16	Ambiguity in CFG	T1:140-145		
17	Simplification of CFG T1:155-164			
18	Chomsky and Greibach normal forms	T1:171-174		
19	Deterministic pushdown automata	T1:203-206		
20	Nondeterministic pushdown automata (PDA) and equivalence with CFG	T1:191-202		
21	pumping lemma for context-free languages T1:214-219			
22	closure properties of CFLs.	T1:220-227		
Module 3 Context	-sensitive languages:			
23	Context-sensitive grammars (CSG) and Context-sensitive languagesT1:299-300			
24	linear bounded automata and equivalence with CSG T1:300-304			
Module 4 Turing r	nachines:			
25	The basic model for Turing machines (TM) T1:231-232			
26	Turing recognizable (Recursively enumerable) T1:285-286			

27	Turing-decidable (recursive) languages	T1:287-288
28	closure properties of RE and REC Language	T1:289-291
29	variants of Turing machines	T1:259-271
30	Deterministic TMs	T1:271-273
31	Nondeterministic TMs and equivalence with deterministic TMs	T1:273-275
32	Unrestricted grammars and equivalence with Turing machines	T1:291-298
33	TMs as enumerators	T1:335-339
Module 5 Undeci	dability	
34	Church-Turing thesis	T1:335-337
35	universal Turing machine	T1:276-280
36	the universal and diagonalization languages	T1:289-291
37	Rice's theorem	T1:320-321
38	reduction between languages and Rice's theorem	T1:310-318
39	undecidable problems about languages.	T1:329-332
40	NP Completeness	T1:355-373

No. of Proposed Lectures: 40

<u>Teacher's Assessment:</u>		
Name of the Activity:	Marks Allotted to Each Activity:	Date of Completion:
1. Special Quiz	05	19th September 2020
2. Assignment	10	10th October 2020
3. Class Notes	05	11st November 2020

Text Books :

T1. An Introduction to FORMAL LANGUAGES and AUTOMATA(sixth Edition), PETER LINZ

T2. Introduction to Automata Theory, Languages, and Computation, 2e by John E, Hopcroft, Rajeev Motwani, Jeffery D. Ullman, Pearson Education.

T3. Theory of Computer Science (Automata, Languages and Computation), 2e by K. L. P. Mishra and N. Chandrasekharan, PHI

Reference Books :

R1. A. M. Padma Reddy, Finite Automata and Formal Languages: A Simple Approach, Pearson Education India

R2. Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of Computation, Pearson Education Asia.

R3. Dexter C. Kozen, Automata and Computability, Undergraduate Texts in Computer Science, Springer.

R4. Michael Sipser, Introduction to the Theory of Computation, PWS Publishing.

R5. John Martin, Introduction to Languages and the Theory of Computation, Tata McGraw Hill.

Evaluation Scheme:

٠

• Mid-Sem Test:

No. Test	-	1		
Marks	-	20 ma	rks	
Type of Question Paper	-	Subjec	ctive and Objective Question	
Guidelines	-	General University Test Guidelines		
Teacher Assessment				
No. of Teacher Assessme	nt	-	3	
1. Special Quiz (5 marks)	-	5 Objective Type Questions of 1 marks each and will be conducted in class.	
2. Assignment (10 marks	5)	-	At least 10 Questions out of 20 of 1 mark each should be solved by students.	

- 2. Assignment (10 marks)
- 3. Class Notes (5 marks)
- Class Notes of Student will be submitted till 14th week of the semester and checked (parameter Content & clearness etc.) by subject teacher.

Contact Address:

Mobile No: 9027458163/8601130333 Email: azit.bce@gmail.com Room No. Computer Lab