
M A N N I N G

Hanumant Deshmukh

Jignesh Malavia

Matthew Scarpino

SCWCD
EXAM STUDY KIT

SECOND EDITION

JAVA WEB

COMPONENT

DEVELOPER

CERTIFICATION

SCE 310-081

Praise for the First Edition

“Written in a very easy-to-read, conversational tone and is an excellent resource for
someone who’s familiar with Java but not with Servlets and JSPs or even for someone
familiar with them, but who needs to brush up on some of the details for the exam …
The bundled CD is chock-full of excellent resources … I will definitely use this book as a
resource even after the exam.”

— JavaRanch.com

“If you want to buy just one book for the SCWCD exam, then this is the book to buy.
The book is well-written and should act as a good reference for you.”

— JavaPrepare.com

“An excellent study guide highly recommended not only for SCWCD exam takers, but
for anyone intending to put their exam credentials to good use … a solid reference for
dedicated programmers.”

— Internet Bookwatch

Five stars! “Well written and well organized by folks who create testing software and
mock exams. The Java source code examples are concise and illustrate the point well …
The Bottom Line: A terrific study guide for the new Sun Certified Web Component
Developer Certification (SCWCD).”

— Focus on Java at About.com

“Certainly recommended for the web component developer examination … extremely
well organized and goes through each and every objective explaining the concepts in a
lucid manner … this book avoids the hassles of going through any API’s or specs because
of its thorough coverage.

“… the discussion is thorough and not intimidating to a novice and even a beginner of
web programming can digest the material easily. Overall I strongly recommend this book
as a study guide for the examination and also as a general reference for JSP technology.”

— Austin JUG

“Like other Manning titles I've reviewed, this title is very dense with little fluff … indis-
pensable if you are studying to earn this certification or just getting your feet wet in the
web tier of Java technology … the perfect reference for the experienced developer who
needs to learn the salient features of JSP/servlet technology quickly and without a lot of
introductory ‘this is web programming’ fluff … it is a very thorough Servlet/JSP/Tag
Library reference and developer guide.”

— DiverseBooks.com

“!!!! Exceptional!”
— Today’s Books
Licensed to Tricia Fu <tricia.fu@gmail.com>

Licensed to Tricia Fu <tricia.fu@gmail.com>

SCWCD
Exam Study Kit
Second Edition
JAVA WEB COMPONENT DEVELOPER CERTIFICATION

MATTHEW SCARPINO (Second Edition author)
HANUMANT DESHMUKH

JIGNESH MALAVIA

with Jacquelyn Carter

M A N N I N G

Greenwich

(74° w. long.)

Licensed to Tricia Fu <tricia.fu@gmail.com>

For online information and ordering of this and other Manning books, please go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2005 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

The authors and publisher have taken care in the preparation of this book, but make no express
or implied warranty of any kind and assume no responsibility for errors or omissions. The authors
and publisher assume no liability for losses or damages in connection with or resulting from the use
of information or programs in the book and the accompanying downloads.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Liz Welch
209 Bruce Park Avenue Typesetter: D. Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-38-9
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 09 08 07 06 05

Licensed to Tricia Fu <tricia.fu@gmail.com>

brief contents

Part 1 Getting started 1

1 Understanding Java servlets 3

2 Understanding JavaServer Pages 14

3 Web application and HTTP basics 21

Part 2 Servlets 29

4 The servlet model 31

5 Structure and deployment 67

6 The servlet container model 83

7 Using filters 97

8 Session management 119

9 Developing secure web applications 139

Part 3 JavaServer Pages and design patterns 163

10 The JSP technology model—the basics 165

11 The JSP technology model—advanced topics 188
v

12 Reusable web components 219

Licensed to Tricia Fu <tricia.fu@gmail.com>

13 Creating JSPs with the Expression Language (EL) 236

14 Using JavaBeans 251

15 Using custom tags 285

16 Developing “Classic” custom tag libraries 309

17 Developing “Simple” custom tag libraries 352

18 Design patterns 376

Appendices

A Installing Tomcat 5.0.25 403

B A sample web.xml file 408

C Review Q & A 412

D Exam Quick Prep 475
vi BRIEF CONTENTS

Licensed to Tricia Fu <tricia.fu@gmail.com>

contents

preface to the second edition xv

preface to the first edition xvii

acknowledgments xviii

about the Sun certification exams xix

about this book xxii

about the authors xxv

about the cover illustration xxvi

Part 1 Getting started 1

1 Understanding Java servlets 3
1.1 What is a servlet? 4

Server responsibilities 4 ✦ Server extensions 5

1.2 What is a servlet container? 5
The big picture 5 ✦ Understanding servlet containers 5
Using Tomcat 8

1.3 Hello World servlet 8
The code 8 ✦ Compilation 9 ✦ Deployment 9
Execution 10

1.4 The relationship between a servlet container and the Servlet API 10
The javax.servlet package 10 ✦ The javax.servlet.http
package 11 ✦ Advantages and disadvantages of
the Servlet API 12

1.5 Summary 13

2 Understanding JavaServer Pages 14
2.1 What is a JSP page? 15
vii

Server-side includes 15

Licensed to Tricia Fu <tricia.fu@gmail.com>

2.2 Hello User 15
The HTML code 16 ✦ The servlet code 16
The JSP code 17

2.3 Servlet or JSP? 17

2.4 JSP architecture models 18
The Model 1 architecture 18 ✦ The Model 2 architecture 18

2.5 A note about JSP syntax 19

2.6 Summary 20

3 Web application and HTTP basics 21
3.1 What is a web application? 22

Active and passive resources 22 ✦ Web applications and the web
application server 22

3.2 Understanding the HTTP protocol 23
HTTP basics 24 ✦ The structure of an HTTP request 24
The structure of an HTTP response 26

3.3 Summary 27

Part 2 Servlets 29

4 The servlet model 31
4.1 Sending requests: Web browsers and HTTP methods 32

Comparing HTTP methods 33

4.2 Handling HTTP requests in an HttpServlet 35

4.3 Analyzing the request 36
Understanding ServletRequest 37 ✦ Understanding
HttpServletRequest 37

4.4 Sending the response 40
Understanding ServletResponse 40 ✦ Understanding
HttpServletResponse 43

4.5 Servlet life cycle 45
Loading and instantiating a servlet 46 ✦ Initializing a servlet 46
Servicing client requests 47 ✦ Destroying a servlet 48
Unloading a servlet 48 ✦ Servlet state transition from the servlet
container’s perspective 48

4.6 ServletConfig: a closer look 50
ServletConfig methods 50 ✦ Example: a servlet and its
deployment descriptor 50
viii CONTENTS

4.7 ServletContext: a closer look 53

Licensed to Tricia Fu <tricia.fu@gmail.com>

4.8 Beyond servlet basics 54
Sharing the data (attribute scopes) 55 ✦ Coordinating servlets
using RequestDispatcher 57 ✦ Accessing request-scoped
attributes with RequestDispatcher 58 ✦ Putting it all together:
A simple banking application 59

4.9 Summary 63

4.10 Review questions 63

5 Structure and deployment 67
5.1 Directory structure of a web application 68

Understanding the document root directory 68 ✦ Understanding
the WEB-INF directory 69 ✦ The web archive (WAR) file 70
Resource files and HTML access 70 ✦ The default web
application 71

5.2 The deployment descriptor: an overview 71
Example: A simple deployment descriptor 72 ✦ Using the
<servlet> element 73 ✦ Using the <servlet-mapping>
element 75 ✦ Mapping a URL to a servlet 76

5.3 Summary 80

5.4 Review questions 80

6 The servlet container model 83
6.1 Initializing ServletContext 84

6.2 Adding and listening to scope attributes 85
Adding and removing scope attributes 85 ✦ Listening to attribute
events 86

6.3 Servlet life-cycle events and listeners 88
javax.servlet.ServletContextListener 88
javax.servlet.Http.HttpSessionListener 89
javax.servlet.Http.HttpServletRequestListener 89

6.4 Adding listeners in the deployment descriptor 90

6.5 Web applications in a distributed environment 92
Behavior of a ServletContext 92 ✦ Behavior of an
HttpSession 93

6.6 Summary 94

6.7 Review questions 94

7 Using filters 97
7.1 What is a filter? 98

How filtering works 99 ✦ Uses of filters 99 ✦ The Hello
CONTENTS ix

World filter 100

Licensed to Tricia Fu <tricia.fu@gmail.com>

7.2 The Filter API 102
The Filter interface 103 ✦ The FilterConfig interface 105
The FilterChain interface 105 ✦ The request and response
wrapper classes 106

7.3 Configuring a filter 106
The <filter> element 106 ✦ The <filter-mapping> element 107
Configuring a filter chain 107

7.4 Advanced features 110
Using the request and response wrappers 110 ✦ Important points
to remember about filters 116 ✦ Using filters with MVC 116

7.5 Summary 117
7.6 Review questions 117

8 Session management 119
8.1 Understanding state and sessions 120

8.2 Using HttpSession 121
Working with an HttpSession 122 ✦ Handling session events
with listener interfaces 124 ✦ Invalidating a Session 130

8.3 Understanding session timeout 130

8.4 Implementing session support 131
Supporting sessions using cookies 132 ✦ Supporting sessions
using URL rewriting 133

8.5 Summary 136
8.6 Review questions 136

9 Developing secure web applications 139
9.1 Basic concepts 140

Authentication 140 ✦ Authorization 140
Data integrity 141 ✦ Confidentiality or data privacy 141
Auditing 141 ✦ Malicious code 141 ✦ Web site attacks 141

9.2 Understanding authentication mechanisms 142
HTTP Basic authentication 143 ✦ HTTP Digest
authentication 145 ✦ HTTPS Client authentication 145
FORM-based authentication 146 ✦ Defining authentication
mechanisms for web applications 146

9.3 Securing web applications declaratively 149
display-name 149 ✦ web-resource-collection 149
auth-constraint 150 ✦ user-data-constraint 151
Putting it all together 152

9.4 Securing web applications programmatically 156
9.5 Summary 158
x CONTENTS

9.6 Review questions 159

Licensed to Tricia Fu <tricia.fu@gmail.com>

Part 3 JavaServer Pages and design patterns 163

10 The JSP technology model—the basics 165
10.1 SP syntax elements 166

Directives 167 ✦ Declarations 168 ✦ Scriptlets 169
Expressions 170 ✦ Actions 171 ✦ Comments 172

10.2 The JSP page life cycle 173
JSP pages are servlets 174 ✦ Understanding translation
units 174 ✦ JSP life-cycle phases 175 ✦ JSP life-cycle
example 178

10.3 Understanding JSP page directive attributes 181
The import attribute 182 ✦ The session attribute 182
The errorPage and isErrorPage attributes 182 ✦ The language
and extends attributes 184 ✦ The buffer and autoFlush
attributes 184 ✦ The info attribute 185 ✦ The contentType
and pageEncoding attributes 185

10.4 Summary 186

10.5 Review questions 186

11 The JSP technology model—advanced topics 188
11.1 Understanding the translation process 189

Using scripting elements 189 ✦ Using conditional and iterative
statements 191 ✦ Using request-time attribute expressions 194
Using escape sequences 194

11.2 Understanding JSP implicit variables and JSP implicit objects 198
application 200 ✦ session 201 ✦ request and response 202
page 202 ✦ pageContext 202 ✦ out 203 ✦ config 204
exception 206

11.3 Understanding JSP page scopes 207
Application scope 207 ✦ Session scope 207
Request scope 208 ✦ Page scope 209

11.4 JSP pages as XML documents 211
The root element 212 ✦ Directives and scripting elements 213
Text, comments, and actions 214

11.5 Summary 215

11.6 Review questions 216

12 Reusable web components 219
12.1 Static inclusion 220

Accessing variables from the included page 221 ✦ Implications of
CONTENTS xi

static inclusion 222

Licensed to Tricia Fu <tricia.fu@gmail.com>

12.2 Dynamic inclusion 223
Using jsp:include 223 ✦ Using jsp:forward 225
Passing parameters to dynamically included components 226
Sharing objects with dynamically included components 228

12.3 Summary 232

12.4 Review questions 232

13 Creating JSPs with the Expression Language (EL) 236
13.1 Understanding the Expression Language 237

EL expressions and JSP script expressions 237 ✦ Using implicit
variables in EL expressions 238

13.2 Using EL operators 241
EL operators for property and collection access 241
EL arithmetic operators 242 ✦ EL relational and logical
operators 243

13.3 Incorporating functions with EL 244
Creating the static methods 244 ✦ Creating a tag library
descriptor (TLD) 245 ✦ Modifying the deployment
descriptor 246 ✦ Accessing EL functions within a JSP 247

13.4 Summary 249

13.5 Review questions 249

14 Using JavaBeans 251
14.1 JavaBeans: a brief overview 252

JavaBeans from the JSP perspective 252 ✦ The JavaBean
advantage 253 ✦ Serialized JavaBeans 255

14.2 Using JavaBeans with JSP actions 258
Declaring JavaBeans using <jsp:useBean> 258 ✦ Mutating
properties using <jsp:setProperty> 266 ✦ Accessing properties
using <jsp:getProperty> 269

14.3 JavaBeans in servlets 271

14.4 Accessing JavaBeans from scripting elements 274

14.5 More about properties in JavaBeans 276
Using nonstring data type properties 276 ✦ Using indexed
properties 278

14.6 Summary 280

14.7 Review questions 281

15 Using custom tags 285
xii CONTENTS

15.1 Getting started 286
New terms 286 ✦ Understanding tag libraries 287

Licensed to Tricia Fu <tricia.fu@gmail.com>

15.2 Informing the JSP engine about a custom tag library 288
Location of a TLD file 289 ✦ Associating URIs with TLD file
locations 290 ✦ Understanding explicit mapping 290
Resolving URIs to TLD file locations 291 ✦ Understanding
the prefix 293

15.3 Using custom tags in JSP pages 293
Empty tags 294 ✦ Tags with attributes 295 ✦ Tags with
JSP code 296 ✦ Tags with nested custom tags 297

15.4 Using the JSP Standard Tag Library (JSTL) 298
Acquiring and installing the JSTL 298 ✦ General purpose JSTL
tags: <c:catch> and <c:out> 299 ✦ Variable support JSTL tags:
<c:set> and <c:remove> 300 ✦ Flow control JSTL: <c:if>,
<c:choose>, <c:forEach>, and <c:forTokens> 301

15.5 Summary 305

15.6 Review questions 305

16 Developing “Classic” custom tag libraries 309
16.1 Understanding the tag library descriptor 310

The <taglib> element 311 ✦ The <tag> element 313
The <attribute> element 314 ✦ The <body-content>
element 316

16.2 The Tag Extension API 318

16.3 Implementing the Tag interface 320
Understanding the methods of the Tag interface 321
An empty tag that prints HTML text 324 ✦ An empty tag
that accepts an attribute 326 ✦ A nonempty tag that includes
its body content 328

16.4 Implementing the IterationTag interface 329
Understanding the IterationTag methods 329 ✦ A simple
iterative tag 330

16.5 Implementing the BodyTag interface 333
Understanding the methods of BodyTag 334 ✦ A tag that
processes its body 335

16.6 Extending TagSupport and BodyTagSupport 338
The TagSupport class 338 ✦ The BodyTagSupport class 339
Accessing implicit objects 339 ✦ Writing cooperative tags 343

16.7 What’s more? 347

16.8 Summary 348

16.9 Review questions 349
CONTENTS xiii

Licensed to Tricia Fu <tricia.fu@gmail.com>

17 Developing “Simple” custom tag libraries 352
17.1 Understanding SimpleTags 353

A brief example 353 ✦ Exploring SimpleTag and
SimpleTagSupport 354

17.2 Incorporating SimpleTags in JSPs 357
Coding empty SimpleTags 357 ✦ Adding dynamic
attributes to SimpleTags 359 ✦ Processing body content
inside SimpleTags 362

17.3 Creating Java-free libraries with tag files 364
Introducing tag files 364 ✦ Tag files and TLDs 365
Controlling tag processing with tag file directives 366
Processing fragments and body content with tag file actions 368

17.4 Summary 371

17.5 Review questions 372

18 Design patterns 376
18.1 Design patterns: a brief history 377

The civil engineering patterns 377 ✦ The Gang of Four
patterns 377 ✦ The distributed design patterns 379
The J2EE patterns 379

18.2 Patterns for the SCWCD exam 382
The pattern template 382 ✦ The Intercepting Filter 385
Model-View-Controller (MVC) 386 ✦ Front Controller 389
Service Locator 391 ✦ Business Delegate 393
Transfer Object 397

18.3 Summary 400

18.4 Review questions 401

 Appendices
A Installing Tomcat 5.0.25 403

B A sample web.xml file 408

C Review Q & A 412

D Exam Quick Prep 475

index 523
xiv CONTENTS

Licensed to Tricia Fu <tricia.fu@gmail.com>

preface to the second edition

When I first considered taking the Sun Certified Web Component Developer
(SCWCD) exam, I thought it was going to be a breeze. After all, I’d deployed some
servlets and I had a solid working knowledge of JavaServer Pages (JSPs). But before I
registered, I figured a few simulation questions couldn’t hurt. What an eye-opener!
The questions seemed better suited to Trivial Pursuit than a software exam. How
could these sadists ask for every Java exception, interface method, and XML element?
Do I look like a Javadoc?

I bought a few books covering the exam, but Manning’s SCWCD Exam Study Kit
stood out from the rest. With its in-depth explanations, multiple helpful appendices,
and powerful simulation software, it became apparent that this was something spe-
cial. Building this immense course must have been a labor of love, and the authors’
dedication shone on every page. It goes without saying that I passed the exam with
flying colors.

When Manning approached me to assist in creating a second edition for the new
310–081 exam, I was honored and nervous. Hanumant and Jignesh had set the stan-
dard for clarity and precise technical understanding, and it would take no small effort
to maintain their degree of merit. But, after passing the new exam, I looked forward
to presenting Sun’s new features for simplifying web development, including the
Expression Language, the JSP Standard Tag Library, and SimpleTag development.
This new edition covers these topics and more, holding as closely as possible to the
quality of its predecessor.

MATTHEW SCARPINO
xv

Licensed to Tricia Fu <tricia.fu@gmail.com>

Licensed to Tricia Fu <tricia.fu@gmail.com>

preface to the first edition

We first started thinking about writing this book when we were preparing to take the
Sun Certified Web Component Developer (SCWCD) exam. We had difficulty find-
ing any books that thoroughly covered the objectives published by Sun. The idea
continued to percolate during the time we were developing JWebPlus, our exam sim-
ulator for the SCWCD. With its successful release, we finally turned our attention to
putting our combined knowledge and experience into this book.

We have been interacting with Java Certification aspirants for a long time.
Through our discussion forums and our exam simulators, JWebPlus and JQPlus (for
SCJP—Sun Certified Java Programmer), we have helped people gain the skills they
need. Our goal in this book is to leverage that experience and help you feel confident
about taking the exam. This book and the accompanying CD will prepare you to do
so; they are all you need to pass with flying colors. Of course, you’ll still have to write
a lot of code yourself !

HANUMANT DESHMUKH

JIGNESH MALAVIA
xvii

Licensed to Tricia Fu <tricia.fu@gmail.com>

acknowledgments

No book gets published without the hard work of a lot of people. We are very grate-
ful to…

Michael Curwen, who tech-proofed all the chapters in the second edition and
added material where appropriate. His detailed knowledge of J2EE ensured that the
material in this book was presented clearly and accurately.

Our reviewers, who provided valuable feedback and comments: Rob Abbe, Phil
Hanna, William Lopez, and Muhammad Ashikuzzaman.

Our publisher, Marjan Bace for his guidance and encouragement, and the entire
publishing team at Manning: Liz Welch for her incredible patience in copyediting,
Karen Tegtmeyer for setting up the reviews, Susan Forsyth for proofreading, Denis
Dalinnik for typesetting the manuscript, and Mary Piergies for managing the produc-
tion process. Also the terrific crew in the back office who printed the book and brought
it to the market in record time.

Finally, our kudos to Jackie Carter. She took great care with the “presentation logic”
throughout the book and put in an incredible amount of effort to format and polish
every chapter. She made sure that the concepts were explained in a clear and professional
manner. We cannot thank her enough for all the hard work she put in to help us shape
a better book.
xviii

Licensed to Tricia Fu <tricia.fu@gmail.com>

about the Sun certification exams

The Java platform comes in three flavors: Standard Edition, Enterprise Edition, and
Micro Edition. The figure below shows the certification exams that Sun offers for the
first two editions.

The Standard Edition (J2SE) is the basis of the Java platform and is used in the
development of Java applets and applications. The standard library includes important
packages, such as java.io, java.net, java.rmi, and javax.swing. Sun offers two certifica-
tions for this platform: the Java Programmer (SCJP) certification and the Java Devel-
oper (SCJD) certification. While the Java Programmer certification process consists of
only one multiple-choice exam covering the basics of the Java language, the Java
Developer certification requires you to develop a simple but nontrivial client server
application using the java.net, java.rmi, and javax.swing packages, followed by an essay-
type exam on the application.

The Enterprise Edition (J2EE) builds on the Standard Edition and includes a num-
ber of technologies, such as Enterprise JavaBeans (EJB), Servlet, and JavaServer Pages,
used for building enterprise-class server-side applications. Sun offers three certifications
for this platform: the Web Component Developer (SCWCD) certification, the Business
Component Developer (SCBCD) certification, and the Enterprise Architect (SCEA) cer-
tification. The SCWCD certification process is designed for programmers developing

A roadmap for Sun’s certifica-

tions in the J2SE and the J2EE

platforms. SCJP certification is
xix

required before taking the

SCWCD exam.

Licensed to Tricia Fu <tricia.fu@gmail.com>

web applications using Servlet and JSP technology and consists of one multiple-
choice exam. You must be a Sun Certified Java Programmer (SCJP) before you can
take this exam. The Business Component Developer certification is for developers
creating applications with Enterprise JavaBeans (EJBs) and EJB containers. The Enter-
prise Architect certification is designed for senior developers who are using the whole
gamut of J2EE technologies to design enterprise-class applications. The certification
process consists of one multiple-choice exam and one architecture and design project,
followed by an essay-type exam on the project.

The Micro Edition (J2ME) is an optimized Java runtime environment meant for
use in consumer electronic products, such as cell phones and pagers.

Preparing for the SCWCD exam

We believe that studying for a test is very different than just learning a technology. Of
course, you also learn the technology when you study for the test. But when you take
the exam, you have to show that you understand what the examiner expects you to know
about the technology. And that’s what makes studying for a test a different ball game
altogether. It is not surprising that even people with many years of experience sometimes
fail the tests. In this book, we’ll teach you the technology while training you for the test.

Here are the things that you will need:

• A copy of the exam objectives. It is very important to take a look at the objectives
before you start a chapter and after you finish it. It helps to keep you focused.
For your convenience, we have included the relevant exam objectives at the
beginning of each chapter, as well as in appendix D.

• A Servlet engine that implements the Servlet 2.4 and JSP 2.0 specifications. You will
need it because we’ll do some coding exercises to illustrate the concepts. In this
book, we have decided to use Tomcat 5.0.25 because it is now the official refer-
ence implementation for the JSP/Servlet technology and it conforms to the
specifications. In addition, it is free and easy to install and run. Appendix A
explains where to get Tomcat 5.0.25 and how to install it. If you are clueless
about what Tomcat is, don’t worry. Chapters 1 and 2 will bring you up to speed.

• A copy of the Servlet 2.4 and JSP 2.0 specifications. The specifications are the best
source of information on this technology. Don’t get scared; unlike the Java Lan-
guage specs, these specs are readable and easy to understand. You can download
the specs for Servlet 2.4 from <http://www.jcp.org/aboutJava/communityprocess/
final/jsr154/> and for JSP 2.0 from <http://jcp.org/aboutJava/communitypro-
cess/final/jsr152/>.

• The JWebPlus exam simulator. We’ve developed this exam simulator to help you
judge your level of preparedness. It not only includes detailed explanations of
the questions but also explains why a certain option is right or wrong. You can
download an abbreviated version of this tool from www.manning.com/
xx ABOUT THE SUN CERTIFICATION EXAMS

deshmukh2. You can buy the full version at www.enthuware.com.

Licensed to Tricia Fu <tricia.fu@gmail.com>

http://www.enthuware.com
http://www.enthuware.com
http://www.enthuware.com

Taking the SCWCD exam

Exam code: 310–081
Cost: $150
Number of questions: 69 multiple-choice questions

The questions tell you the number of correct answers. You may also get questions that
ask you to match options on the left side with options on the right side, or that ask
you to drag and drop options to the correct place. In general, many exam takers have
reported that questions on this test are easier than the ones on the Sun Certified Java
Programmer’s exam. The exam starts with a survey that asks you questions about your
level and experience with Servlet/JSP technology, but these questions are not a part of
the actual exam.

At the time of this writing, the duration of the test was 135 minutes. But Sun
has changed the duration for the SCJP exam a couple of times, so they could change
the duration of this test as well. Please verify it before you take the exam. You can
get the latest information about the exam from http://suned.sun.com.

Here’s how to register and what to expect:

• First, purchase an exam voucher from your local Sun Educational Services
office. In the United States, you can purchase an exam voucher by visiting the
Sun web site, at www.sun.com/training/catalog/courses/CX-310-081.xml. If
you reside outside the United States, you should contact your local Sun Educa-
tional Services office. You’ll be given a voucher number.

• Tests are conducted by Prometric all across the world. You have to contact them
to schedule the test. Please visit the Prometric web site at www.2test.com for
information about testing centers. Before you schedule the test, check out the
testing center where you plan to take the exam. Make sure you feel comfortable
with the environment there. Believe us, you do not want to take the test at a
noisy place. Once you finalize the center, you can schedule the test.

• You should reach the testing center at least 15 minutes before the test, and don’t
forget to take two forms of ID. One of the IDs should have your photograph on it.

• After you finish the test, the screen will tell you whether or not you passed. You
will need a score of 62% in order to pass (43 correct answers out of 69 ques-
tions). You will receive a printed copy of the detailed results.

Best of luck!
ABOUT THE SUN CERTIFICATION EXAMS xxi

Licensed to Tricia Fu <tricia.fu@gmail.com>

about this book

This book is built around the objectives that Sun has published for the updated
SCWCD exam. If you know everything that is covered by the objectives, you will pass
the exam. The chapters in the book examine each objective in detail and explain
everything you need to understand about web component development.

Who is this book for?

This book is for Java programmers who want to prepare for the SCWCD exam, which
focuses on the Servlet and JavaServer Pages technologies. This book will also be very
useful for beginners since we have explained the concepts using simple examples. The
text will bring you up to speed even if you are totally new to these technologies. Even
expert Servlet/JSP programmers should read the book to ensure that they do not over-
look any exam objectives. However, since this book is a study guide, we do not try to
cover advanced tricks and techniques for expert Servlet/JSP developers.

How this book is organized

This book has three parts:

For those of you new to web component development, we’ve included one introduc-
tory chapter each on Servlets and JavaServer Pages. The objectives of chapters 1 and 2
are to make you comfortable with this technology. They won’t make you an expert,
but they’ll teach you enough so that you can understand the rest of the book. If you
already have experience with the Servlet and JavaServerPages technologies, you can
skip these two chapters. Since in practice servlets are written for HTTP, we have also
included a brief discussion of the HTTP protocol and the basics of web applications

Part Topic Chapters

1 The basics of web component development 1 through 3

2 The Servlet technology 4 through 9

3 The JavaServerPages (JSP) technology and design patterns 10 through 18
xxii

in chapter 3. You should read this chapter even if you know the HTTP protocol.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Chapters 4 through 18 cover the exam objectives. Some chapters start with basic
concepts that do not necessarily correspond to exam objectives but that are very impor-
tant in order to understand the remaining sections. In the chapters, we illustrate the
concepts with simple test programs. You should try to write and run the programs, and
we encourage you to modify them and try out similar examples. From our experience,
we’ve seen that people tend to understand and remember the concepts a lot better if
they actually put them in code and see them in action.

There are four appendices. Appendix A will help you set up Tomcat. Appendix B con-
tains a sample web.xml file that illustrates the use of various deployment descriptor tags.
Appendix C contains the answers to each chapter’s review questions. In appendix D, you
will find the Quick Prep, a summary of key concepts and helpful tips that you can review
as part of your last-minute exam preparations.

How each chapter is organized

After the introductory chapters in part 1, each chapter begins with a list of the exam
objectives that are discussed within it, along with the chapter sections in which each
objective is addressed. In some of the chapters, the order of the objectives departs
slightly from the original Sun numbering to better correspond to the way the topics
within the chapters have been organized.

As you read through the chapters, you will encounter Quizlets about the material
you have just read. Try to answer the Quizlet without looking at the answer; if you are
correct, you can feel confident that you have understood the concepts.

At the end of each chapter, you will find review questions that will help you to eval-
uate your ability to answer the exam questions related to the objectives for the chapter.
The answers to these questions are in appendix C.

Code conventions

Italic typeface is used to introduce new terms.
Courier typeface is used to denote code samples, as well as elements and

attributes, method names, classes, interfaces, and other identifiers.
Bold courier is used to denote important parts of the code samples.
Code annotations accompany many segments of code.
Line continuations are indented.

Downloads

Source code for all the programming examples in this book is available for download
from the publisher’s web site, www.manning.com/deshmukh2. Any corrections to
code will be updated on an ongoing basis.

Also available for download is the abbreviated version of the JWebPlus exam sim-
ulator which contains a practice exam. Please go to www.manning.com/deshmukh2
ABOUT THIS BOOK xxiii

to download the exam simulator and follow the instructions that accompany the file.

Licensed to Tricia Fu <tricia.fu@gmail.com>

System requirements for JWebPlus are:

• OS: Win 98, NT, 2000, XP, Must have IE 5.0 or later version.

• Processor (Min Speed): AMD/Intel Pentium (500MHz)

• Min RAM: 128MB

• HDD space: 2 MB

Author Online

Purchase of the SCWCD Exam Study Kit Second Edition includes free access to a private
web forum run by Manning Publications, where you can make comments about the
book, ask technical questions, and receive help from the authors and from other users.
To access the forum and subscribe to it, point your web browser to www.man-
ning.com/deshmukh2. This page provides information on how to get on the forum
once you are registered, what kind of help is available, and the rules of conduct on
the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the AO remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!

The Author Online forum and the archives of previous discussions will be acces-
sible from the publisher’s web site as long as the book is in print.

You can also reach the authors through their web site at www.jdiscuss.com, where
they maintain forums for the discussion of Java topics, especially those related to the
Sun exams. Additionally, the web site contains material that you will find useful in
your preparation for the exam, such as information about books, tutorials, free and
commercial practice exams, and study notes. The site will continue to be updated with
exciting new resources as they become available.
xxiv ABOUT THIS BOOK

Licensed to Tricia Fu <tricia.fu@gmail.com>

about the authors

HANUMANT DESHMUKH is the president and founder of Enthuware.com Pvt. Ltd. He
also manages www.jdiscuss.com, a free site designed for Java certification aspirants. He
has been working in the information technology industry for over eight years, mainly
consulting for projects with the Distributed Object Oriented System using J2EE tech-
nologies. Hanumant also designs and develops the Java certification software for his
company. The exam simulators from Enthuware.com, JQPlus (for SCJP) and JWeb-
Plus (for SCWCD), are well known and respected in the Java community.

JIGNESH MALAVIA is a senior technical architect at SourceCode, Inc. in New York.
For over eight years, he has been involved in the design and development of various
types of systems, from language interpreters to business applications. Teaching is one
of his passions, and he has taught courses on Java and web development, as well as C,
C++, and Unix, at various locations, including the Narsee Monjee Institute of Man-
agement Science (NMIMS), Mumbai. He has been actively involved with Enthuware
projects and currently provides online guidance to candidates preparing for Sun certi-
fication exams.

MATTHEW SCARPINO is a Sun Certified Web Component Developer and has devel-
oped a number of web sites for business. He has worked with Java for over six years, with
particular emphasis on the Eclipse IDE. He has been recently involved in designing
with Eclipse’s Rich Client Platform seeks to extend these applications across a network.

JACQUELYN CARTER is an editor and technical writer who also has many years’ expe-
rience providing information technology solutions for organizations in both the busi-
ness and nonprofit worlds.
xxv

Licensed to Tricia Fu <tricia.fu@gmail.com>

about the cover illustration

The figure on the cover of SCWCD Exam Study Kit Second Edition is taken from a
Spanish compendium of regional dress customs first published in Madrid in 1799.
The book’s title page states:

Coleccion general de los Trages que usan actualmente todas las Nacionas del
Mundo desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R.
Obra muy util y en special para los que tienen la del viajero universal

which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the known world,
designed and printed with great exactitude by R.M.V.A.R. This work is very useful
especially for those who hold themselves to be universal travelers

Although nothing is known of the designers, engravers, and workers who colored this
illustration by hand, the “exactitude” of their execution is evident in this drawing
which is just one of many figures in this colorful collection. Their diversity speaks
vividly of the uniqueness and individuality of the world’s towns and regions just 200
years ago. This was a time when the dress codes of two regions separated by a few
dozen miles identified people uniquely as belonging to one or the other. The collec-
tion brings to life a sense of isolation and distance of that period—and of every other
historic period except our own hyperkinetic present.

Dress codes have changed since then and the diversity by region, so rich at the time,
has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago‚ brought back to life by the pictures from this collection.
xxvi

Licensed to Tricia Fu <tricia.fu@gmail.com>

1P A R T
Getting started
Part 1 is intended for readers who are new to web component development. We
introduce you to the concepts you’ll need to understand before you begin the chap-
ters that focus on the exam objectives. Our topics here include the Servlet and JSP
technologies, web applications, and the HTTP protocol.
Licensed to Tricia Fu <tricia.fu@gmail.com>

Licensed to Tricia Fu <tricia.fu@gmail.com>

C H A P T E R 1

Understanding

Java servlets
1.1 What is a servlet? 4
1.2 What is a servlet container? 5
1.3 Hello World servlet 8

1.4 The relationship between a servlet container and the Servlet API 10
1.5 Summary 13
INTRODUCTION

The goal of this book is to explain how you can use J2EE to create these dynamic web
components. We’ll do this by discussing servlets and JavaServer Pages (JSPs) in great
technical depth. We’ll present the theory behind these concepts, and then supplement
the theory with practical code. Then, by using Tomcat or a similar web server, you can
construct your own code to cement the material in your mind.
3

Licensed to Tricia Fu <tricia.fu@gmail.com>

1.1 WHAT IS A SERVLET?

As is apparent from its name, a servlet is a server-side entity. But what exactly does it
mean? Is it a new design pattern for writing servers? Is it a new Java class? Or is it a new
technology? The answer to all these questions is yes, albeit in different contexts. To
understand any new concept, it is important to know the reasons behind its concep-
tion. So, let’s start by having a look at the tasks a server needs to do.

1.1.1 Server responsibilities

Every server that provides services to remote clients has two main responsibilities. The
first is to handle client requests; the second is to create a response to be sent back. The
first task involves programming at the socket level, extracting information from
request messages, and implementing client-server protocols, such as FTP and HTTP.
The second task, creating the response, varies from service to service. For example, in
the case of FTP servers that serve file transfer requests, response creation is as simple as
locating a file on the local machine. On the other hand, HTTP servers that host full-
fledged web applications are required to be more sophisticated in the way they generate
output. They have to create the response dynamically, which may involve complicated
tasks, such as retrieving data from the database, applying business rules, and presenting
the output in the formats desired by different clients.

One way to write a simple server that serves only static data would be to code every-
thing in a single executable program. This single program would take care of all the
different chores, such as managing the network, implementing protocols, locating
data, and replying. However, for HTTP servers that serve syndicated data, we require
a highly flexible and extensible design. Application logic keeps changing, clients need
personalized views of information, and business partners need customized processing
rules. We cannot write a single program that handles all these tasks. Furthermore,
what if a new functionality has to be added? What if the data format changes? Mod-
ifying the source files (especially after the developer has left!) to add new code is surely
the last thing we want to do.

Well, there is a better design for these kinds of servers: divide the code into two
executable parts—one that handles the network and one that provides the application
logic—and let the two executables have a standard interface between them. This kind
of separation makes it possible to modify the code in the application logic without
affecting the network module, as long as we follow the rules of the interface. Tradi-
tionally, people have implemented this design for HTTP servers using Common Gate-
way Interface (CGI). On one side of this interface is the main web server, and on the
other side are the CGI scripts. The web server acts as the network communications
module and manages the clients, while the CGI scripts act as data processing modules
and deliver the output. They follow the rules of the “common gateway interface” to
pass data between them.
4 CHAPTER 1 UNDERSTANDING JAVA SERVLETS

Licensed to Tricia Fu <tricia.fu@gmail.com>

1.1.2 Server extensions

Although CGI provides a modular design, it has several shortcomings. The main issue
for high-traffic web sites is scalability. Each new request invocation involves the cre-
ation and destruction of new processes to run the CGI scripts. This is highly ineffi-
cient, especially if the scripts perform initialization routines, such as connecting to a
database. Moreover, they use file input/output (I/O) as a means of communication
with the server, causing a significant increase in the overall response time.

A better way is to have the server support separate executable modules that can be
loaded into its memory and initialized only once—when the server starts up. Each
request can then be served by the already in-memory and ready-to-serve copy of the
modules. Fortunately, most of the industrial-strength servers have been supporting such
modules for a long time, and they have made the out-of-memory CGI scripts obsolete.
These separate executable modules are known as server extensions. On platforms other
than Java, server extensions are written using native-language APIs provided by the
server vendors. For example, Netscape Server provides the Netscape Server Applica-
tion Programming Interface (NSAPI), and Microsoft’s Internet Information Server
(IIS) provides the Internet Server Application Programming Interface (ISAPI). In Java,
server extensions are written using the Servlet API,1 and the server extension modules
are called servlets.

1.2 WHAT IS A SERVLET CONTAINER?

A web server uses a separate module to load and run servlets. This specialized module,
which is dedicated to servlet management, is called a servlet container, or servlet engine.

1.2.1 The big picture

Figure 1.1 shows how different components fit into the big picture. HTML files are
stored in the file system, servlets run within a servlet container, and business data is in
the database.

The browser sends requests to the web server. If the target is an HTML file, the
server handles it directly. If the target is a servlet, the server delegates the request to
the servlet container, which in turn forwards it to the servlet. The servlet uses the file-
system and database to generate dynamic output.

1.2.2 Understanding servlet containers

Conceptually, a servlet container is a part of the web server, even though it may run in
a separate process. In this respect, servlet containers are classified into the following
three types:

1 An overview of the Servlet API is given in section 1.4. The details of the different elements of this API
WHAT IS A SERVLET CONTAINER? 5

are explained in chapters 4 through 9.

Licensed to Tricia Fu <tricia.fu@gmail.com>

• Standalone—Servlet containers of this type are typically Java-based web servers
where the two modules—the main web server and the servlet container—are
integral parts of a single program (figure 1.2).

Tomcat (we’ll learn about Tomcat shortly) running all by itself is an example of
this type of servlet container. We run Tomcat as we would any normal Java pro-
gram inside a Java Virtual Machine (JVM). It contains handlers for static con-
tent, like HTML files, and handlers for running servlets and JSP pages.

• In-process—Here, the main web server and the servlet container are different
programs, but the container runs within the address space of the main server as

Figure 1.1 The big picture: all the components of a web-based application

Figure 1.2

A standalone

servlet container
6 CHAPTER 1 UNDERSTANDING JAVA SERVLETS

a plug-in (figure 1.3).

Licensed to Tricia Fu <tricia.fu@gmail.com>

An example of this type is Tomcat running inside Apache Web Server. Apache
loads a JVM that runs Tomcat. In this case, the web server handles the static
content by itself, and Tomcat handles the servlets and JSP pages.

• Out-of-process—Like in-process servers, the main web server and the servlet con-
tainer are different programs. However, with out-of-process, the web server runs
in one process while the servlet container runs in a separate process (figure 1.4).
To communicate with the servlet container, the web server uses a plug-in, which
is usually provided by the servlet container vendor.

An example of this type is Tomcat running as a separate process configured to
receive requests from Apache Web Server. Apache loads the mod_jk plug-in to
communicate with Tomcat.

Each of these types has its advantages, limitations, and applicability. We will not dis-
cuss these details, since they are beyond the scope of this book.

Many servlet containers are available on the market—Tomcat (Apache), Resin
(Caucho Technology), JRun (Macromedia), WebLogic (BEA), and WebSphere
(IBM), just to name a few. Some of these, like WebLogic and WebSphere, are much
more than just servlet containers. They also provide support for Enterprise JavaBeans

Figure 1.3

An in-process

servlet container

Figure 1.4 An out-of-process servlet container
WHAT IS A SERVLET CONTAINER? 7

(EJB), Java Message Service (JMS), and other J2EE technologies.

Licensed to Tricia Fu <tricia.fu@gmail.com>

1.2.3 Using Tomcat

Tomcat is a servlet container developed under the Jakarta project at the Apache Soft-
ware Foundation (ASF). You can get a wealth of information about Tomcat from
http://jakarta.apache.org/tomcat. We have decided to use Tomcat ver-
sion 5.0.25 for the examples in this book because of the following reasons:

• It is free.

• It implements the latest Servlet 2.4 and JSP 2.0 specifications, which is what we
need for the exam.

• It has the capability of running as a web server by itself (Standalone mode).
There is no need for a separate web server.

We have given installation instructions for Tomcat in appendix A. In the discussions
of the examples throughout the book, we have assumed that the Tomcat installation
directory is c:\jakarta-tomcat-5.0.25. Note that once you have installed
Tomcat, you must set the CATALINA_HOME, JAVA_HOME, and CLASSPATH vari-
ables, as described in appendix A.

1.3 HELLO WORLD SERVLET

In this section, we will look at the four basic steps—coding, compiling, deploying, and
running—required to develop and run the customary Hello World servlet,2 which
prints Hello World! in the browser window. By the way, do you know who started
the trend of writing “Hello World!” as an introductory program?3

1.3.1 The code

Listing 1.1 contains the code for HelloWorldServlet.java.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class HelloWorldServlet extends HttpServlet
{
 public void service(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException,
 IOException
 {
 PrintWriter pw = response.getWriter();
 pw.println("<html>");
 pw.println("<head>");

2 The details of the code will become clear as we move through the chapters.

Listing 1.1 HelloWorldServlet.java
8 CHAPTER 1 UNDERSTANDING JAVA SERVLETS

3 Kernighan, Brian and Ritchie, Dennis. The C Programming Language. Prentice-Hall. 1988.

Licensed to Tricia Fu <tricia.fu@gmail.com>

 pw.println("</head>");
 pw.println("<body>");
 pw.println("<h3>Hello World!</h3>");
 pw.println("</body>");
 pw.println("</html>");
 }
}

1.3.2 Compilation

Note the import statements in listing 1.1. They import the classes from the
javax.servlet and javax.servlet.http packages. In Tomcat, they are pro-
vided as part of the servlet-api.jar file, which is in the directory
c:\jakarta-tomcat-5.0.25\common\lib\. To compile the program in list-
ing 1.1, include the JAR file in the classpath, as directed in appendix A. We will explain
the details of these packages in section 1.4.

1.3.3 Deployment

Deployment is a two-step process. (We’ll discuss the deployment structure in
chapter 5.) First, we put the resources into the required directory. Then, we inform
Tomcat about our servlet by editing the web.xml file:

1 Copy the HelloWorldServlet.class file to the directory

 c:\jakarta-tomcat-5.0.25\webapps\chapter01\WEB-INF\classes

2 Create a text file named web.xml in the c:\jakarta-tomcat-5.0.25\
web-apps\chapter01\WEB-INF directory. Write the following lines in
the file:

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <servlet>
 <servlet-name>HelloWorldServlet</servlet-name>
 <servlet-class>HelloWorldServlet</servlet-class>
 </servlet>
 </web-app>

You can also copy the chapter01 directory directly from the Manning web site to
your c:\jakarta-tomcat-5.0.25\webapps directory. This will provide all
the files you need to run the example.
HELLO WORLD SERVLET 9

Licensed to Tricia Fu <tricia.fu@gmail.com>

1.3.4 Execution

Start Tomcat with a shortcut or with the DOS prompt (c:\jakarta-tomcat-
5.0.25\bin\startup.bat). Open a browser window and go to the URL
http://localhost/chapter01/servlet/HelloWorldServlet.

Hello World! should appear in the browser window.

1.4 THE RELATIONSHIP BETWEEN A SERVLET
CONTAINER AND THE SERVLET API

Sun’s Servlet specification provides a standard and a platform-independent framework
for communication between servlets and their containers. This framework is made up
of a set of Java interfaces and classes. These interfaces and classes are collectively called
the Servlet Application Programming Interfaces, or the Servlet API. Simply put, we
develop servlets using this API, which is implemented by the servlet container (see fig-
ure 1.5). The Servlet API is all we as servlet developers need to know. Since all the
servlet containers must provide this API, the servlets are truly platform- and servlet
container–independent. Essentially, understanding the rules of this API and the func-
tionality that it provides is what servlet programming is all about!

The Servlet API is divided into two packages: javax.servlet and javax.serv-
let.http. We will discuss these packages in more detail as we progress through the
book, but for now, let’s take a quick look at them.

1.4.1 The javax.servlet package

This package contains the generic servlet interfaces and classes that are independent of
any protocol.

The javax.servlet.Servlet interface

This is the central interface in the Servlet API. Every servlet class must directly or indi-
rectly implement this interface. It has five methods, as shown in table 1.1.

Figure 1.5

Servlets interact

with the servlet

container through

the Servlet API.
10 CHAPTER 1 UNDERSTANDING JAVA SERVLETS

Licensed to Tricia Fu <tricia.fu@gmail.com>

The service() method handles requests and creates responses. The servlet con-
tainer automatically calls this method when it gets any request for this servlet. The
complete signature of this method is

 public void service (ServletRequest, ServletResponse)
 throws ServletException, java.io.IOException;

The javax.servlet.GenericServlet class

The GenericServlet class implements the Servlet interface. It is an abstract
class that provides implementation for all the methods except the service() method
of the Servlet interface. It also adds a few methods to support logging. We can
extend this class and implement the service() method to write any kind of servlet.

The javax.servlet.ServletRequest interface

The ServletRequest interface provides a generic view of the request that was sent
by a client. It defines methods that extract information from the request.

The javax.servlet.ServletResponse interface

The ServletResponse interface provides a generic way of sending responses. It
defines methods that assist in sending a proper response to the client.

1.4.2 The javax.servlet.http package

This package provides the basic functionality required for HTTP servlets. Interfaces
and classes in this package extend the corresponding interfaces and classes of the
javax.servlet package to build support for the HTTP protocol.

Table 1.1 Methods of the javax.servlet.Servlet interface

Method Description

init() This method is called by the servlet container to indicate to the servlet
that it must initialize itself and get ready for service. The container
passes an object of type ServletConfig as a parameter.

service() This method is called by the servlet container for each request from the
client to allow the servlet to respond to the request.

destroy() This method is called by the servlet container to indicate to the servlet
that it must clean up itself, release any required resources, and get ready
to go out of service.

getServletConfig() Returns information about the servlet, such as a parameter to the
init() method.

getServletInfo() The implementation class must return information about the servlet,
such as the author, the version, and copyright information.
SERVLET CONTAINER AND SERVLET API 11

Licensed to Tricia Fu <tricia.fu@gmail.com>

The javax.servlet.http.HttpServlet class

HttpServlet is an abstract class that extends GenericServlet. It adds a new
service() method with this signature:

 protected void service (HttpServletRequest, HttpServletResponse)
 throws ServletException, java.io.IOException;

In the Hello World example, we extended our servlet class from this class and we
overrode the service() method.

The javax.servlet.http.HttpServletRequest interface

The HttpServletRequest interface extends ServletRequest and provides an
HTTP-specific view of the request. It defines methods that extract information, such
as HTTP headers and cookies, from the request.

The javax.servlet.http.HttpServletResponse interface

The HttpServletResponse interface extends ServletResponse and provides
an HTTP-specific way of sending responses. It defines methods that assist in setting
information, such as HTTP headers and cookies, into the response.

1.4.3 Advantages and disadvantages of the Servlet API

The advantages of the Servlet API are as follows:

• Flexibility—Each time we need to add new functionality to the server, all we
have to do is write a new servlet specific to that set of requirements and plug it
into the server, without modifying the server itself.

• Separation of responsibilities—The main server now only needs to worry about
the network connections and communications part. The job of interpreting
requests and creating appropriate responses is delegated to the servlets.

• It’s Java—Java programmers don’t need to learn a new scripting language. Also,
they can use all the object-oriented features provided by Java.

• Portability—We can develop and test a servlet in one container and deploy it in
another. Unlike proprietary solutions, the Servlet API is independent of web
servers and servlet containers. We can “write once, run anywhere,” as long as the
containers support the standard Servlet API.

One obvious limitation, or rather restriction, of the Servlet API is one that is common
to all kinds of frameworks: you have to stick to the rules set forth by the framework.
This means we have to follow certain conventions to make the servlet container happy.

Another disadvantage involves the containers available in the market and not the
Servlet API itself. Theoretically, using the API, you can write servlets for almost any
kind of protocol, including FTP, SMTP, or even proprietary protocols. Nevertheless,
12 CHAPTER 1 UNDERSTANDING JAVA SERVLETS

it would not be fair to expect the servlet container providers to build support for all

Licensed to Tricia Fu <tricia.fu@gmail.com>

of them. As of now, the Servlet specification mandates support only for HTTP through
the javax.servlet.http package.

1.5 SUMMARY

In this chapter, we learned about the basics of servlets and the servlet container, and
how they provide extensions to a server’s functionality. We also ran a sample Hello
World servlet that displayed a line of text in the browser window. Finally, we looked
at the Servlet API and its classes and interfaces.

Armed with this knowledge, we can now answer the question “What is a servlet?”
from several different perspectives. Conceptually, a servlet is a piece of code that can be

• Plugged into an existing server to extend the server functionality

• Used to generate the desired output dynamically

For a servlet container, a servlet is

• A Java class like any other normal Java class

• A class that implements the javax.servlet.Servlet interface

For a web component developer, a servlet, or specifically an HTTP servlet, is a class that

• Extends javax.servlet.http.HttpServlet

• Resides in a servlet container (such as Tomcat or JRun)

• Serves HTTP requests
SUMMARY 13

Licensed to Tricia Fu <tricia.fu@gmail.com>

C H A P T E R 2

Understanding

JavaServer Pages
2.1 What is a JSP page? 15
2.2 Hello User 15

2.4 JSP architecture models 18
2.5 A note about JSP syntax 19
2.3 Servlet or JSP? 17 2.6 Summary 20
INTRODUCTION

Part 3 of this book addresses the exam objectives that apply to JavaServer Pages (JSP).
For those of you who are just learning about JSP technology, this chapter will give you
all the information you need to get started.
14

Licensed to Tricia Fu <tricia.fu@gmail.com>

2.1 WHAT IS A JSP PAGE?

A JSP page is a web page that contains Java code along with the HTML tags. Like any
other web page, a JSP page has a unique URL, which is used by the clients to access the
page. When accessed by a client, the Java code within the page is executed on the server
side, producing textual data. This data, which is surrounded by HTML tags, is sent as
a normal HTML page to the client. Since the Java code embedded in a JSP page is pro-
cessed on the server side, the client has no knowledge of the code. The code is replaced
by the HTML generated by the Java code before the page is sent to the client. Before
we discuss how to create JSP pages, let’s discuss the need for such a technology.

2.1.1 Server-side includes

HTML is a markup language that specifies how to label different parts of data for
visual presentation. The hyperlinks provide a way to jump from one piece of infor-
mation to another. However, the content is already inside the HTML tags. The tags do
not create it; they merely decorate it for presentation. HTML by itself produces static
web pages, but today, it is necessary for most web sites to have dynamic content. To
generate the content dynamically, we need something that can allow us to specify busi-
ness logic and that can generate data in response to a request. The data can then be
formatted using HTML.

A dynamic web page consists of markup language code as well as programming lan-
guage code. Instead of serving the page as is to the clients, a server processes the pro-
gramming language code, replaces the code with the data generated by the code, and
then sends the page to the client. This methodology of embedding programming lan-
guages within HTML is called the server-side include and the programming language
that is embedded within the HTML is called the scripting language. For example,
Netscape’s Server-Side JavaScript (SSJS) and Microsoft’s Active Server Pages (ASP) are
examples of server-side includes. They use JavaScript and VBScript, respectively, as
the scripting languages. JavaServer Pages is the name of the technology that provides
a standard specification for combining Java as the scripting language with HTML. It
forms the presentation layer of Sun’s Java 2 Enterprise Edition (J2EE) architecture.

The JSP specification lists the syntax and describes the semantics of the various
elements that make up a JSP page. These elements are called JSP tags. Thus, a JSP
page is an HTML template made up of intermixed active JSP tags and passive HTML
tags. At runtime, the template is used to generate a purely HTML page, which is sent
to the client.

2.2 HELLO USER

To see the benefits of JSP, let’s look at the following example. We have written it three
times: first as an HTML page, then as a servlet, and finally as a JSP page. The purpose
of the example is to greet the visitors to a web page with the word Hello.
HELLO USER 15

Licensed to Tricia Fu <tricia.fu@gmail.com>

2.2.1 The HTML code

Let’s start with some simple HTML code, shown in listing 2.1.

<html>
<body>
<h3>Hello User</h3>
</body>
</html>

When accessed with the URL http://localhost/chapter02/Hello.html,
the code in listing 2.1 prints Hello User. However, since HTML is static, it cannot
print the user’s name. For example, printing either Hello John or Hello Mary
(depending on the user’s input) is not possible when using a pure HTML page. It will
print the same two words—Hello User—regardless of the user.

2.2.2 The servlet code

The HelloServlet.java servlet implements this example by modifying the
service() method. This is shown in listing 2.2.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class HelloServlet extends HttpServlet
{
 public void service(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException,
 IOException
 {
 String userName = request.getParameter("userName");

 PrintWriter pw = response.getWriter();
 pw.println("<html>");
 pw.println("<head>");
 pw.println("</head>");
 pw.println("<body>");
 pw.println("<h3>Hello " + userName + "</h3>");
 pw.println("</body>");
 pw.println("</html>");
 }
}

When accessed with the URL http://localhost/chapter02/servlet/
HelloServlet?userName=John, the code in listing 2.2 prints Hello John.
The user’s name is passed to the servlet as part of the URL. The service() method

Listing 2.1 Hello.html

Listing 2.2 HelloServlet.java
16 CHAPTER 2 UNDERSTANDING JAVASERVER PAGES

sends it back to the browser as part of the generated HTML.

Licensed to Tricia Fu <tricia.fu@gmail.com>

2.2.3 The JSP code

Listing 2.3 contains the JSP code that is equivalent to the previous servlet code.

<html>
<body>
<h3>Hello ${param.userName} </h3>
</body>
</html>

When accessed with the URL http://localhost/chapter02/Hello.jsp?
userName=John, the code in listing 2.3 prints Hello John. Again, the user’s name
is passed to the JSP page as part of the URL.

As you can see from this example, a JSP page contains standard HTML tags. Unlike
servlets, it does not involve the explicit writing and compilation of a Java class by the
page author. What gives it the power of dynamically generating the greeting is the
small amount of JSP code enclosed within the characters ${ and }.

2.3 SERVLET OR JSP?

Well, if servlets can do whatever JSP pages can, and vice versa, what is the difference
between them? And if JSP pages are that easy to write, why bother learning about servlets?

You will recall from the first chapter that servlets are server extensions and provide
extra functionality to the main server. This could include implementation of special-
ized services, such as authentication, authorization, database validation, and transac-
tion management. Servlets act as controller components that control the business
logic. They are developed by Java programmers with strong object-oriented program-
ming skills.

On the other hand, JavaServer Pages are web pages. They are similar in structure
to HTML pages at design time. Any web page designer who has some knowledge of
JSP tags and the basics of Java can write JSP pages.

Web applications typically consist of a combination of servlets and JSP pages. A
user-authentication process that accepts login and password information is a good
example. The code that generates the HTML FORM, success and error messages, and
so forth should be in a JSP page, while the code that accesses the database, validates
the password, and authenticates the user should be in a servlet.

Keep these conventions in mind:

• JSP pages are meant for visual presentation.

• Business logic is deferred to servlets.

Listing 2.3 Hello.jsp
SERVLET OR JSP? 17

Licensed to Tricia Fu <tricia.fu@gmail.com>

2.4 JSP ARCHITECTURE MODELS

The JSP tutorials from Sun describe two architectural approaches for building appli-
cations using the JSP and servlet technology. These approaches are called JSP Model 1
and JSP Model 2 architectures. The difference between the two lies in the way they
handle the requests.

2.4.1 The Model 1 architecture

In Model 1 architecture, the target of every request is a JSP page. This page is com-
pletely responsible for doing all the tasks required for fulfilling the request. This
includes authenticating the client, using JavaBeans to access the data, managing the
state of the user, and so forth. This architecture is illustrated in figure 2.1.

As you can see in figure 2.1, there is no central component that controls the work-
flow of the application. This architecture is suitable for simple applications. However,
it has some serious drawbacks that limit its usage for complex applications. First, it
requires embedding business logic using big chunks of Java code into the JSP page.
This creates a problem for the web page designers who are usually not comfortable
with server-side programming. Second, this approach does not promote reusability of
application components. For example, the code written in a JSP page for authen-
ticating a user cannot be reused in other JSP pages.

2.4.2 The Model 2 architecture

This architecture follows the Model-View-Controller (MVC) design pattern (which
we will discuss in chapter 18, “Design patterns.”). In this architecture, the targets of
all the requests are servlets that act as the controller for the application. They analyze
the request and collect the data required to generate a response into JavaBeans objects,
which act as the model for the application. Finally, the controller servlets dispatch the
request to JSP pages. These pages use the data stored in the JavaBeans to generate a
response. Thus, the JSP pages form the view of the application. Figure 2.2 illustrates
this architecture.
18 CHAPTER 2 UNDERSTANDING JAVASERVER PAGES

Figure 2.1 The JSP Model 1 architecture

Licensed to Tricia Fu <tricia.fu@gmail.com>

The biggest advantage of this model is the ease of maintenance that results from the
separation of responsibilities. The Controller presents a single point of entry into the
application, providing a cleaner means of implementing security and state manage-
ment; these components can be reused as needed. Then, depending on the client’s
request, the Controller forwards the request to the appropriate presentation compo-
nent, which in turn replies to the client. This helps the web page designers by letting
them work only with the presentation of the data, since the JSP pages do not require
any complex business logic. In this way, it satisfactorily solves the problems associated
with the Model 1 architecture.

2.5 A NOTE ABOUT JSP SYNTAX

Since this book is specifically meant for the SCWCD exam, its chapters are designed
according to the exam objectives specified by Sun. The JSP syntax elements are spread
over multiple sections in the exam specification, and therefore, we have spread out the
explanations of the elements over several chapters in the book. Table 2.1 contains all
of the JSP elements and points out which of them are covered in the exam and which
are not. It also documents in which exam objective sections these elements are
addressed and where you can find explanations in this book.

Figure 2.2 The JSP Model 2 architecture

Table 2.1 JSP syntax elements

Elements
Exam objective
section/subsection

Book
section

Directives 6.1 10.1.1

page 6.2 10.3

include 6.2 12.1
A NOTE ABOUT JSP SYNTAX 19

continued on next page

Licensed to Tricia Fu <tricia.fu@gmail.com>

2.6 SUMMARY

In this chapter, we learned about the basics of JavaServer Pages technology and server-
side includes. We briefly compared JSP pages to servlets and discussed when it is appro-
priate to use one or the other. We also discussed the two JSP architectural models and
how they differ in their request-handling process.

taglib 6.2 15, 16, and 17

Declarations 6.1 10.1.2 and 12.1.1

Scriptlets 6.1 10.1.3 and 12.1.1

Conditional 6.1 11.1.2

Iteration 6.1 11.1.2

Expressions 8.1 10.1.4 and 11.1.3

Actions 10.1.5

jsp:include 8.2 12.2.1

jsp:forward 8.2 12.2.2

jsp:useBean 8.1 14.2.1

jsp:setProperty 8.1 14.2.2

jsp:getProperty 8.1 14.2.3

jsp:plugin NC 10.1.5

Expression Language implicit variables 7.1 13.1

operators 7.2, 7.3 13.2

functions 7.4 13.3

Comments NC 10.1.6

XML-based syntax 6.3 11.4

NC = Not covered on the exam

Table 2.1 JSP syntax elements (continued)

Elements
Exam objective
section/subsection

Book
section
20 CHAPTER 2 UNDERSTANDING JAVASERVER PAGES

Licensed to Tricia Fu <tricia.fu@gmail.com>

C H A P T E R 3

Web application and

HTTP basics

3.1 What is a web application? 22
3.2 Understanding the HTTP protocol 23

3.3 Summary 27
INTRODUCTION

In the early years of the Internet, most web sites were constructed entirely of HTML
pages. HTML pages are called static web pages, since they have all of their content
embedded within them and they cannot be modified at execution time. As web tech-
nology became more sophisticated, web sites started to incorporate various techniques
to create or modify the pages at the time of the user’s visit to the site, often in response
to the user’s input. These are called dynamic pages. Today, web sites come in all kinds
of styles, and most of them offer at least some type of dynamic features on their pages.
The web technologies used to create these dynamic pages include plug-in web compo-
nents, such as Java Applets or Microsoft ActiveX Controls; programs to build dynamic
web pages, such as CGI programs or ASP pages; and n-tier web/distributed systems
based on Java Servlets and JavaServer Pages.
21

Licensed to Tricia Fu <tricia.fu@gmail.com>

3.1 WHAT IS A WEB APPLICATION?

An obvious but still accurate definition of a web application is that it is an application
that is accessible from the Web! A common example of a web application is a web site
that provides free e-mail service. It offers all the features of an e-mail client such as
Outlook Express, but is completely web based. A key benefit of web applications is the
ease with which the users can access the applications. All a user needs is a web browser;
there is nothing else to be installed on the user’s machine. This increases the reach of
the applications tremendously while alleviating versioning and upgrading issues.

A web application is built of web components that perform specific tasks and are able
to expose their services over the Web. For example, the HelloWorldServlet that
we developed in chapter 1 is a web component. Since it is complete in itself, it is also
a web application. In real life, however, a web application consists of multiple servlets,
JSP pages, HTML files, image files, and so forth. All of these components coordinate
with one another and provide a complete set of services to users.

3.1.1 Active and passive resources

One way of categorizing web resources is that they are either passive or active. A
resource is passive when it does not have any processing of its own; active objects have
their own processing capabilities.

For example, when a browser sends a request for www.myserver.com/
myfile.html, the web server at myserver.com looks for the myfile.html file,
a passive resource, and returns it to the browser. Similarly, when a browser sends a request
for www.myserver.com/reportServlet, the web server at myserver.com for-
wards the request to reportServlet, an active resource. The servlet generates the
HTML text on the fly and gives it to the web server. The web server, in turn, forwards
it to the browser. A passive resource is also called a static resource, since its contents
do not change with requests.

A web application is usually a mixture of active and passive resources, but it is the
presence of the active resources that make a web application nearly as interactive as
normal applications. Active resources in a web application typically provide dynamic
content to users and enable them to execute business logic via their browsers.

3.1.2 Web applications and the web application server

A web application resides in a web application server (or application server). The appli-
cation server provides the web application with easy and managed access to the
resources of the system. It also provides low-level services, such as the HTTP protocol
implementation and database connection management. A servlet container is just a
part of an application server. In addition to the servlet container, an application server
may provide other J2EE components, such as an EJB container, a JNDI server, and a
JMS server. You can find detailed information about J2EE and application servers at
22 CHAPTER 3 WEB APPLICATION AND HTTP BASICS

http://java.sun.com/j2ee. Examples of J2EE application servers include BEA
Systems’ WebLogic, IBM’s WebSphere, and Sun’s Java System Application Server.

Licensed to Tricia Fu <tricia.fu@gmail.com>

A web application is described using a deployment descriptor. A deployment descrip-
tor is an XML document named web.xml, and it contains the description of all the
dynamic components of the web application. For example, this file has an entry for
every servlet used in the web application. It also declares the security aspects of the
application. An application server uses the deployment descriptor to initialize the com-
ponents of the web application and to make them available to the clients.

3.2 UNDERSTANDING THE HTTP PROTOCOL

Simply put, the Hypertext Transfer Protocol is a request-response–based stateless pro-
tocol. A client sends an HTTP request for a resource and the server returns an HTTP
response with the desired resource, as shown in figure 3.1.

A client opens a connection to the server and sends an HTTP request message. The
client receives an HTTP response message sent by the server and closes the connection.
It is stateless because once the server sends the response it forgets about the client. In
other words, the response to a request does not depend on any previous requests that
the client might have made. From the server’s point of view, any request is the first
request from the client.

In the case of the Internet, the web browser is an HTTP client, the web server is
an HTTP server, and the resources are HTML files, image files, servlets, and so forth.
Each resource is identified by a unique Uniform Resource Identifier (URI). You will fre-
quently hear three terms used interchangeably: URI, URL, and URN. Although they
are similar, they have subtle differences:

• Uniform Resource Identifier—A URI is a string that identifies any resource.
Identifying the resource may not necessarily mean that we can retrieve it. URI is
a superset of URL and URN.

• Uniform Resource Locator—URIs that specify common Internet protocols such
as HTTP, FTP, and mailto are also called URLs. URL is an informal term and is
not used in technical specifications.

• Uniform Resource Name—A URN is an identifier that uniquely identifies a
resource but does not specify how to access the resource. URNs are standardized
by official institutions to maintain the uniqueness of a resource.

Figure 3.1

HTTP is a request-
UNDERSTANDING THE HTTP PROTOCOL 23

response-based

stateless protocol.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Here are some examples:

• files/sales/report.html is a URI, because it identifies some resource.
However, it is not a URL because it does not specify how to retrieve the resource.
It is not a URN either, because it does not identify the resource uniquely.

• http://www.manning.com/files/sales/report.html is a URL because
it also specifies how to retrieve the resource.

• ISBN:1-930110-59-6 is a URN because it uniquely identifies this book,
but it is not a URL because it does not indicate how to retrieve the book.

For more details on these terms, visit www.w3c.org.

3.2.1 HTTP basics

An HTTP message is any request from a client to a server, or any response from a server
to a client.

The formats of the request and response messages are similar and are in plain
English. Table 3.1 lists the parts of an HTTP message.

All the lines end with CRLF—that is, ASCII values 13 (Carriage Return) and 10
(Line Feed).

Let’s now look at the individual structures of the request and response messages.

3.2.2 The structure of an HTTP request

An HTTP message sent by a client to a server is called an HTTP request. The initial line
for an HTTP request has three parts, separated by spaces:

• A method name

• The local path of the requested resource (URI)

• The version of HTTP being used

A typical request line is

GET /reports/sales/index.html HTTP/1.1

Here, GET is the method name, /report/sales/index.html is the resource URI,

Table 3.1 The parts of an HTTP message

Message part Description

The initial line Specifies the purpose of the request or response message

The header section Specifies the meta-information, such as size, type, and encoding, about
the content of the message

A blank line

An optional message body The main content of the request or response message
24 CHAPTER 3 WEB APPLICATION AND HTTP BASICS

and HTTP/1.1 is the HTTP version of the request.

Licensed to Tricia Fu <tricia.fu@gmail.com>

The method name specifies the action that the client is requesting the server to perform.
HTTP 1.1 requests can have only one of the following three methods: GET, HEAD, or
POST. HTTP 1.1 adds five more: PUT, OPTIONS, DELETE, TRACE, and CONNECT.

GET

The HTTP GET method is used to retrieve a resource. It means “get the resource iden-
tified by this URI.” The resource is usually a passive resource. A GET request may be
used for an active resource if there are few or no parameters to be passed. If parameters
are required, they are passed by appending a query string to the URI. For example, fig-
ure 3.2 illustrates the initial request line for passing john as a userid.

The part after the question mark is called a query string. It consists of parameter name-
value pairs separated by an ampersand (&), as in

name1=value1&name2=value2&…&nameM=valueM

In the example in figure 3.2, userid is the parameter name and john is the value.

HEAD

An HTTP HEAD request is used to retrieve the meta-information about a resource.
Therefore, the response for a HEAD request contains only the header. The structure of
a HEAD request is exactly the same as that of a GET request.

HEAD is commonly used to check the time when the resource was last modified
on the server before sending it to the client. A HEAD request can save a lot of band-
width, especially if the resource is very big, since the actual resource would not have
to be sent if the client already had the latest version.

POST

A POST request is used to send data to the server in order to be processed. It means
“post the data to the active resource identified by this URI.” The block of data is sent
in the message body. Usually, to describe this message body, extra lines are present in
the header, such as Content-Type and Content-Length.

HTML pages use POST to submit HTML FORM data. Figure 3.3 shows an example
of an HTTP POST request generated by a typical form submission. The value of

Figure 3.2 An initial request line using GET and a query string
UNDERSTANDING THE HTTP PROTOCOL 25

Content-Type is application/x-www-form-urlencoded, and the value
of Content-Length is the length of the URL-encoded form data.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Observe the data line of the request in figure 3.3. In POST, the parameters are sent in
the message body, unlike in GET, in which they are a part of the request URI.

PUT

A PUT request is used to add a resource to the server. It means, “put the data sent in the
message body and associate it with the given Request-URI.” For example, when we
PUT a local file named sample.html to the server myhome.com using the URI
http://www.myhome.com/files/example.html, the file becomes a resource
on that server and is associated with the URI http://www.myhome.com/files/
example.html. The name of the file (sample.html) on the client machine is irrel-
evant on the server. This request is mainly used to publish files on the server.

NOTE There is a subtle difference between a POST and a PUT request. POST
means we are sending some data to a resource for processing. On the other
hand, a PUT request means we are sending some data that we want to be
associated with a URI.

If you want to learn more about HTTP, read the specification at www.w3.org/
Protocols/rfc2616/rfc2616.

3.2.3 The structure of an HTTP response

An HTTP message sent by a server to a client is called an HTTP response. The initial
line of an HTTP response is called the status line. It has three parts, separated by spaces:
the HTTP version, a response status code that tells the result of the request, and an
English phrase describing the status code. HTTP defines many status codes; common
ones that you may have noticed are 404 and 500. Here are two examples of a status
line that could be sent in the response:

 HTTP/1.1 404 Not Found
 HTTP/1.1 500 Internal Error

When the browser receives a status code that implies a problem, it displays an appro-
priate message to the user. If some data is associated with the response, headers like
Content-Type and Content-Length that describe the data may also be present.

A typical HTTP response looks like this:

Figure 3.3 A POST request as generated by a form submission
26 CHAPTER 3 WEB APPLICATION AND HTTP BASICS

Licensed to Tricia Fu <tricia.fu@gmail.com>

 HTTP/1.1 200 OK
 Date: Tue, 01 Sep 2004 23:59:59 GMT
 Content-Type: text/html
 Content-Length: 52
 <html>
 <body>
 <h1>Hello, John!</h1>
 </body>

 </html>

3.3 SUMMARY

A web application is a collection of web components that perform specific tasks and
allow the users to access business logic via their browsers.

In this chapter, we introduced the basic concepts of HTTP, the Hypertext Transfer
Protocol. We examined the structure of the HTTP request, including GET, HEAD,
POST, and PUT, as well as the structure of the HTTP response.
SUMMARY 27

Licensed to Tricia Fu <tricia.fu@gmail.com>

Licensed to Tricia Fu <tricia.fu@gmail.com>

2P A R T
Servlets
In the Java world, servlets are the cornerstone of web component technology. In
this part of the book, we discuss aspects of the Servlet technology that you need to
know, as specified by the exam objectives.
Licensed to Tricia Fu <tricia.fu@gmail.com>

Licensed to Tricia Fu <tricia.fu@gmail.com>

C H A P T E R 4
The servlet model
4.1 Sending requests: Web browsers and

HTTP methods 32
4.2 Handling HTTP requests in

an HttpServlet 35
4.3 Analyzing the request 36

4.5 Servlet life cycle 45
4.6 ServletConfig: a closer look 50
4.7 ServletContext: a closer look 53
4.8 Beyond servlet basics 54
4.9 Summary 63
4.4 Sending the response 40 4.10 Review questions 63

EXAM OBJECTIVES

 1.1 For each of the HTTP Methods (such as GET, POST, HEAD, and so on):

• Describe the purpose of the method and the technical characteristics of the
HTTP Method protocol,

• List triggers that might cause a Client (usually a Web browser) to use the
method; and

• Identify the HttpServlet method that corresponds to the HTTP Method.
(Sections 4.1 and 4.2)

 1.2 Using the HttpServletRequest interface, write code to

• Retrieve HTML form parameters from the request,
• Retrieve HTML request header information, or
• Retrieve cookies from the request
(Section 4.3)

 1.3 Using the HttpServletResponse interface, write code to

• Set up an HTTP response header,
• Set the content type of the response,
31

• Acquire a text stream for the response,

Licensed to Tricia Fu <tricia.fu@gmail.com>

• Acquire a binary stream for the response,
• Redirect an HTTP request to another URL, or
• Add cookies to the response

(Section 4.4)
 1.4 Describe the purpose and event sequence of the servlet life cycle:

• Servlet class loading,
• Servlet instantiation,
• Call the init() method,
• Call the service method, and
• Call the destroy() method

(Section 4.5)
 3.5 Describe the RequestDispatcher mechanism;

• Write servlet code to create a request dispatcher,
• Write servlet code to forward or include the target resource, and
• Identify and describe the additional request-scoped attributes provided by the

container to the target resource.

(Section 4.8)

INTRODUCTION

Java servlet technology is commonly used to handle the business logic of a web applica-
tion, although servlets may also contain presentation logic. We discussed the basics of
Java servlets in chapter 1. In this chapter, we will take a closer look at the servlet model.

The Servlet specification applies to any protocol, but in practice, most servlets are
written for the HTTP protocol, which is why the SCWCD exam focuses on HTTP serv-
lets. In this context, whenever we talk about servlets, we mean HttpServlets. Sim-
ilarly, by client and server, we mean HTTP client and HTTP server, respectively.

This chapter is lengthy, and while it introduces many concepts about servlets, it
will not provide in-depth discussions. Don’t worry; at this point, we want you to get
familiar with the servlet model without getting lost in the details. We will cover all of
these concepts in detail in later chapters.

4.1 SENDING REQUESTS: WEB BROWSERS
AND HTTP METHODS

As we discussed in chapter 3, the HTTP protocol consists of requests from the client
to the server, and the responses from the server back to the client. Let’s look at the request
first. A web browser sends an HTTP request to a web server when any of the following
events happen:

• A user clicks on a hyperlink displayed in an HTML page.
• A user fills out a form in an HTML page and submits it.
32 CHAPTER 4 THE SERVLET MODEL

• A user enters a URL in the browser’s address field and presses Enter.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Other events trigger a browser to send a request to a web server; for instance, a Java-
Script function may call the reload() method on the current document. Ultimately,
however, all such triggers boil down to one of the three events listed above, because
such method calls are nothing but programmatic simulations of the user’s actions.

By default, the browser uses the HTTP GET method in all of the above events.
However, we can customize the browser’s behavior to use different HTTP methods.
For example, the following HTML FORM forces the browser to use the HTTP POST
method via the method attribute:

 <FORM name='loginForm' method='POST' action='/loginServlet'>
 <input type='text' name='userid'>
 <input type='password' name='passwd'>
 <input type='submit' name='loginButton' value='Login'>
 </FORM>

NOTE If you do not specify the method attribute in a <FORM> tag, the browser
uses GET by default. If you require a POST, you must explicitly specify
METHOD='POST' in the <FORM> tag.

In the following section, we will look at situations in which we might need to force the
browser to use POST instead of GET.

4.1.1 Comparing HTTP methods

For the exam, you will be required to demonstrate that you understand both the ben-
efits and functionality of these HTTP methods:

• GET

• POST

• HEAD

We have already seen their basic structure and meaning in chapter 3. Now we will look
at the difference between their uses, and identify the situations in which one method
is preferred over the other.

Table 4.1 compares the features of GET and POST.

Table 4.1 Comparison of GET and POST methods

Feature GET method POST method

Target resource type Active or passive. Active.

Type of data Text. Text as well as Binary.

Amount of data Although the HTTP protocol
does not limit the length of the
query string, some older brows-
ers and web servers may not be
able to handle more than 255
characters.

Unlimited.
SENDING REQUESTS: WEB BROWSERS AND HTTP METHODS 33

continued on next page

Licensed to Tricia Fu <tricia.fu@gmail.com>

Based on table 4.1, we can make some generalizations about when to use each method.
Use GET

• To retrieve an HTML file or an image file, because only the filename needs to
be sent.

Use POST

• To send a lot of data; for example, POST is well suited for an online survey,
since the length of the query string may exceed 255 characters.

• To upload a file.

• To capture the username and password, because we want to prevent users from
seeing the password as a part of the URL.

Recall from chapter 3 that HEAD is the same as GET except that for a HEAD request,
the server returns only the response header and not the message body. This makes
HEAD more efficient than GET in cases where we need only the response header. For
example, a response header contains the modification timestamp, which can be used
to determine the staleness of a resource.

In general, clicking on a hyperlink or using the browser’s address field causes the
browser to send a GET request. We can, of course, attach a JavaScript function,
onClick(), to programmatically submit a form, thereby causing a POST request
to be sent. However, that is not what we are concerned about for the purpose of
the exam.

Quizlet
Q: A developer wants to upload a file from the browser to the server. The

following is the HTML snippet from the HTML page that she wrote:

 <FORM name='uploader' action='/saveServlet'
 enctype='multipart/form-data' >
 <input type='file' name='file'>
 <input type='submit' name='uploadButton' value='Upload'>
 </FORM>

Visibility Data is part of the URL and is
visible to the user in the URL
field of the browser.

Data is not a part of the URL
and is sent as the request mes-
sage body. It is not visible to the
user in the URL field of the
browser.

Caching Data can be cached in the
browser’s URL history.

Data is not cached in the
browser’s URL history.

Table 4.1 Comparison of GET and POST methods (continued)

Feature GET method POST method
34 CHAPTER 4 THE SERVLET MODEL

What is wrong with this code snippet?

Licensed to Tricia Fu <tricia.fu@gmail.com>

A: The contents of the file must be sent to the server using a POST request.
However, the HTML FORM used in this code does not have any method
attribute; therefore, a GET request will be sent. The developer must
specify the <FORM> tag like this:

 <FORM name='uploader' action='/saveServlet'
 enctype='multipart/form-data' method='POST'>

4.2 HANDLING HTTP REQUESTS
IN AN HTTPSERVLET

In the previous section, we discussed three commonly used HTTP methods, their fea-
tures and limitations, and the situations in which these methods are used. In this sec-
tion, we will explore what happens when an HTTP request reaches an HTTP servlet.

 For every HTTP method, there is a corresponding method in the HttpServlet
class having the general signature
 protected void doXXX(HttpServletRequest, HttpServletResponse)
 throws ServletException, IOException;

where doXXX() depends on the HTTP method, as shown in table 4.2.

The HttpServlet class provides empty implementations for each of the doXXX()
methods. We should override the doXXX() methods to implement our business logic.

Understanding the sequence of events in HttpServlet

You may now wonder who calls the doXXX() methods. Here is the flow of control
from the servlet container to the doXXX() methods of a servlet:

1 The servlet container calls the service(ServletRequest, Servlet-
Response) method of HttpServlet.

2 The service(ServletRequest, ServletResponse) method of Http-
Servlet calls the service(HttpServletRequest, HttpServlet-
Response) method of the same class. Observe that the service method is

Table 4.2 HTTP methods and the corresponding servlet methods

HTTP method HttpServlet method

GET doGet()

HEAD doHead()

POST doPost()

PUT doPut()

DELETE doDelete()

OPTIONS doOptions()

TRACE doTrace()
HANDLING HTTP REQUESTS IN AN HTTPSERVLET 35

overloaded in the HttpServlet class.

Licensed to Tricia Fu <tricia.fu@gmail.com>

3 The service(HttpServletRequest, HttpServletResponse) method
of HttpServlet analyzes the request and finds out which HTTP method is
being used. Depending on the HTTP method, it calls the corresponding
doXXX() method of the servlet. For example, if the request uses the POST
method, it calls the doPost() method of the servlet.

NOTE If you override the service methods in your servlet class, you will lose the
functionality provided by the HttpServlet class, and the doXXX()
methods will not be called automatically. In your implementation, you will
have to determine the HTTP method used in the request, and then you will
have to call the appropriate doXXX() method yourself. For this reason, it’s
recommended to only override the doPost() or doGet() methods.

All of the doXXX() methods take two parameters: an HttpServletRequest
object and an HttpServletResponse object. We will learn about these objects in
the following sections.

But first, here’s a note about the Servlet API: Most of the important components
of the Servlet API, including HttpServletRequest and HttpServlet-
Response, are interfaces. The servlet container provides the classes that implement
these interfaces. So, whenever we say something like “an HttpServletRequest
object,” we mean “an object of a class that implements the HttpServletRequest
interface.” The name of the actual class is not significant and is, in fact, unknown to
the developer.

Quizlet
Q: Which method of TestServlet will be called when a user clicks on

the following URL?

 Test URL

A: The method="POST" attribute-value pair does not make sense in the
<a href> tag. Clicking on a hyperlink always sends a GET request and
thus, the doGet() method of the servlet will be called.

4.3 ANALYZING THE REQUEST

Both ServletRequest and its subclass, HttpServletRequest, allow us to
analyze a request. They provide us with a view of the data sent by the browser. The
data includes parameters, meta-information, and a text or binary data stream.

ServletRequest provides methods that are relevant to any protocol, while
HttpServletRequest extends ServletRequest and adds methods specific to
HTTP. It is for this reason that the ServletRequest interface belongs to the
javax.servlet package and the HttpServletRequest interface belongs to
36 CHAPTER 4 THE SERVLET MODEL

the javax.servlet.http package.

Licensed to Tricia Fu <tricia.fu@gmail.com>

We always use the HttpServletRequest class, but it is important to know
which methods are implemented in the HttpServletRequest class and which
methods are inherited from the ServletRequest class.

4.3.1 Understanding ServletRequest

The primary use of ServletRequest is to retrieve the parameters sent by a client.
Table 4.3 describes the methods provided to retrieve the parameters.

4.3.2 Understanding HttpServletRequest

The class that implements the HttpServletRequest interface implements all of
the methods of ServletRequest in an HTTP-specific manner. It parses and inter-
prets HTTP messages and provides the relevant information to the servlet.

Let’s look at an example of how we can use these methods. Figure 4.1 shows an
HTML page that allows a user to send two parameters to the server.

Table 4.3 Methods provided by ServletRequest for retrieving client-sent parameters

Method Description

String getParameter
(String paramName)

This method returns just one of the values associated
with the given parameter.

String[] getParameterValues
(String paramName)

This method returns all the values associated with the
parameter. For example, while doing a job search, you
might have seen a “location” list box that allows you to
select multiple states. In this case, the parameter
“location” may have multiple values.

Enumeration getParameterNames() This method is useful when you don’t know the names
of the parameters. You can iterate through the Enumer-
ation of Strings returned by this method and for each
element you can call getParameter() or
getParameterValues().

Figure 4.1
ANALYZING THE REQUEST 37

An HTML page

containing a FORM

Licensed to Tricia Fu <tricia.fu@gmail.com>

Listing 4.1 is the HTML code for this page.

<form action="/servlet/TestServlet" method="POST">
Technology : <input type="text" name="searchstring" value="java">

State : <select name="state" size="5" multiple>
 <option value="NJ">New Jersey</option>
 <option value="NY">New York</option>
 <option value="KS">Kansas</option>
 <option value="CA">California</option>
 <option value="TX">Texas</option>
</select>

<input type="submit" value="Search Job">
</form>

This FORM displays a text field, a list box, and a submit button. The action attribute
of the FORM specifies that TestServlet should handle the request. Observe that
the method attribute of the FORM is set to POST, and so the parameters will be sent
to the server using an HTTP POST request.

Once the request is sent to the server, TestServlet is invoked. Listing 4.2 shows
how TestServlet’s doPost() method retrieves the parameters that were sent by
submitting the form (listing 4.1).

public void doPost(HttpServletRequest req,
 HttpServletResponse res)
{
 String searchString = req.getParameter("searchstring");

 String[] stateList = req.getParameterValues("state");

 //use the values and generate appropriate response
}

In the above code, we know the names of the parameters (searchstring and
state) sent with the request, so we can use the getParameter() and get-
ParameterValues() methods to retrieve the parameter values. When the param-
eter values are not known, we can use getParameterNames() to retrieve the
parameter names.

Retrieving request headers

Just as there are methods to retrieve request parameters, there are methods to

Listing 4.1 HTML page snippet

Uses HTTP POST

Allows selection of
multiple values

Listing 4.2 Code for doPost to retrieve parameter values

Retrieves
searchstring
parameter
value

Retrieves all
the values
selected in the
state list
38 CHAPTER 4 THE SERVLET MODEL

retrieve names and values from request headers. We’d like to point out one

Licensed to Tricia Fu <tricia.fu@gmail.com>

difference, though; unlike parameters, headers are specific to the HTTP protocol
and so the methods that deal with the headers belong to HttpServletRequest
and not to ServletRequest.

HttpServletRequest provides the methods shown in table 4.4 to help us
retrieve the header information.

Let’s see how we can use the methods described in table 4.4. The service() method
code shown in listing 4.3 prints out all the headers present in a request.

public void service(HttpServletRequest req,
 HttpServletResponse res)
{
 Enumeration headers = req.getHeaderNames();

 while (headers.hasMoreElements())
 {

 String header = (String) headers.nextElement();
 String value = req.getHeader(header);
 System.out.println(header+" = "+value);
 }
}

Retrieving cookies from the request

The final HttpServletRequest method that you’ll need to know for the exam is
getCookies(). This method returns an array of Cookie objects that provide
information about the current client/server interaction called a session. We’ll discuss
these objects and their uses in chapter 8.

There are other convenience methods in ServletRequest and in Http-
ServletRequest that we will not discuss here, since they are not required for the
exam. To learn more about them, refer to the Servlet API documentation.

Table 4.4 HttpServletRequest methods for managing request headers

Method Description

String getHeader
(String headerName)

This method returns just one of the values associated with
the given header.

Enumeration getHeaders
(String headerName)

This method returns all the values associated with the
header as an Enumeration of String objects.

Enumeration getHeaderNames() This method is useful when you don’t know the names of
the headers. You can iterate through the enumeration
returned by this method, and for each element you can
call getHeader() or getHeaders().

Listing 4.3 Printing out all the headers on the console

Retrieves header names

Retrieves header values
ANALYZING THE REQUEST 39

Licensed to Tricia Fu <tricia.fu@gmail.com>

Quizlet
Q: Which method would you use to retrieve the number of parameters

present in a request?
A: Neither ServletRequest nor HttpServletRequest provides

any method to retrieve the number of parameters directly. You’ll have to
use ServletRequest.getParameterNames(), which returns an
Enumeration, and count the number of parameters yourself.

4.4 SENDING THE RESPONSE

The HttpServletResponse object is a servlet’s gateway to send information back
to the browser. It accepts the data that the servlet wants to send to the client and for-
mats it into an HTTP message as per the HTTP specification.

ServletResponse provides methods that are relevant to any protocol, while
HttpServletResponse extends ServletResponse and adds HTTP-specific
methods. Not surprisingly, the ServletResponse interface belongs to the
javax.servlet package and the HttpServletResponse interface belongs to
the javax.servlet.http package.

4.4.1 Understanding ServletResponse

ServletResponse declares several generic methods, including getWriter(),
getOutputStream(), setContentType(), and so forth. We will now discuss
two important methods.

Using PrintWriter

Let’s first look at the getWriter() method of ServletResponse. This method
returns an object of class java.io.PrintWriter that can be used to send charac-
ter data to the client. PrintWriter is extensively used by servlets to generate HTML
pages dynamically. Listing 4.4 demonstrates its use by sending the header information
of a request to the browser.

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ShowHeadersServlet extends HttpServlet
{
 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException
 {

Listing 4.4 Writing HTML code dynamically
40 CHAPTER 4 THE SERVLET MODEL

 PrintWriter pw = res.getWriter(); Gets the PrintWriter object

Licensed to Tricia Fu <tricia.fu@gmail.com>

 pw.println("<html>");
 pw.println("<head>");
 pw.println("</head>");
 pw.println("<body>");

 pw.println("<h3>Following are the headers that the
 server received.</h3><p>");

 Enumeration headers = req.getHeaderNames();

 while(headers.hasMoreElements())
 {
 String header = (String) headers.nextElement();
 String value = req.getHeader(header);

 pw.println(header+" = "+value+"
");
 }

 pw.println("</body>");
 pw.println("</html>");
 }
}

In listing 4.4, we use the getWriter() method to retrieve the PrintWriter
object. We use the getHeaderNames() and getHeader() methods to retrieve
header information, and then we write the values using the PrintWriter object. We
then finish our dynamic HTML page with a closing </body> and </html> tag.

Using ServletOutputStream

If we want to send a binary file, for example a JAR file, to the client, we will need
an OutputStream instead of a PrintWriter. ServletResponse provides
the getOutputStream() method that returns an object of class javax.servlet.
ServletOutputStream. In listing 4.5, we have changed the doGet() method
of the previous example to send a JAR file to the browser.

public void doGet(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException
{
 res.setContentType("application/jar");

 File f = new File("test.jar");
 byte[] bytearray = new byte[(int) f.length()];
 FileInputStream is = new FileInputStream(f);
 is.read(bytearray);

 OutputStream os = res.getOutputStream();

Uses PrintWriter to
write the HTML page

Listing 4.5 Sending a JAR file to the browser

Sets the content type

Reads the file into
a byte array
SENDING THE RESPONSE 41

Gets the OutputStream

Licensed to Tricia Fu <tricia.fu@gmail.com>

 os.write(bytearray);

 os.flush();

}

In listing 4.5, we retrieve the OutputStream using the getOutputStream()
method. We simply read the contents of a JAR file into a byte array and write the byte
array to the OutputStream.

Observe that we are calling the setContentType() method before calling the
getOutputStream() method. The setContentType() method allows us to
specify the MIME type of the data we are sending in the response. The content type
can also include the character encoding used in the response. If we need to obtain a
PrintWriter with a nondefault content type or character encoding, we must call
setContentType() before calling getWriter(). The setContentType()
method belongs to the ServletResponse interface and is declared as shown in
table 4.5.

You might have also noticed that in the line File f = new File("test.jar");
we are hard-coding the filename to test.jar. This requires the file test.jar to
be in the bin directory of Tomcat. We will come back to this later in section 4.7 to
learn a better way of specifying the file.

NOTE An important point to note about the getWriter() and getOutput-
Stream() methods is that you can call only one of them on an instance of
ServletResponse. For example, if you have already called the get-
Writer() method on a ServletResponse object, you cannot call the
getOutputStream() method on the same ServletResponse object.
If you do, the getOutputStream() method will throw an Illegal-
StateException. You can call the same method multiple times, though.

Table 4.5 The method provided by ServletResponse for setting the content type of the response

Method Description

public void setContentType
(String type)

This method is used to set the content type of the response.
The content type may include the type of character encoding
used, for example, text/html; charset=ISO-8859-4. If
obtaining a PrintWriter, this method should be called first for
the charset to take effect. If this method is not called, the
content type is assumed to be text/html. The following are
some commonly used values for the content type: text/
html, image/jpeg, video/quicktime, application/
java, text/css, and text/javascript.

Sends the bytes of the byte array to the browser

Flushes the data
42 CHAPTER 4 THE SERVLET MODEL

Licensed to Tricia Fu <tricia.fu@gmail.com>

4.4.2 Understanding HttpServletResponse

In addition to setting the content type of the response, there are three other important
capabilities of HttpServletResponses that you need to know for the exam: set-
ting response header information, redirecting HTTP requests to another URL, and
adding cookies to the response.

Setting the response headers

We use headers to convey additional information about the response by setting name-
value pairs. For example, we can use a header to tell the browser to reload the page it
is displaying every 5 minutes, or to specify how long the browser can cache the page.
As shown in table 4.6, the HttpServletResponse interface provides seven meth-
ods for header management.

Table 4.7 shows four important header names. Although on the exam you will not
be asked questions based on header names and values, it is good to know some
commonly used headers. For a complete list of header names-values, refer to the
HTTP specification.

Another useful method related to headers is addCookie(Cookie c). This method
lets us create Cookie objects and set them in the response. We will learn about cook-

Table 4.6 HttpServletResponse methods for managing response headers

Method Description

void setHeader (String name,
String value)

Used to set the name-value pair for a header in the
ServletRequest.

void setIntHeader (String name,
int value)

Saves you from converting the int value to string.

void setDateHeader (String name,
long millisecs)

Pretty much the same as above.

void addHeader/addIntHeader/
addDateHeader

These methods can be used to associate multiple val-
ues with the same header.

boolean containsHeader
(String name)

Returns a Boolean that tells you whether or not a
header with this name is already set.

Table 4.7 Typical response header names and their uses

Header name Description

Date Specifies the current time at the server.

Expires Specifies the time when the content can be considered stale.

Last-Modified Specifies the time when the document was last modified.

Refresh Tells the browser to reload the page.
SENDING THE RESPONSE 43

ies in chapter 8, “Session management.”

Licensed to Tricia Fu <tricia.fu@gmail.com>

Redirecting the request

After analyzing a request, a servlet may decide that it needs to redirect the browser to
another resource. For example, a company web site may be able to provide only com-
pany news. For all other kind of news, it may redirect the browser to another web site.
The HttpServletResponse class provides the sendRedirect() method
exactly for this purpose, as shown here:

 if("companynews".equals(request.getParameter("news_category")))
 {
 //retrieve internal company news and generate
 //the page dynamically
 }
 else
 {
 response.sendRedirect("http://www.cnn.com");
 }

The above code checks the news_category parameter to decide whether it should
generate a reply on its own or redirect the browser to cnn.com. When the browser
receives the redirect message, it automatically goes to the given URL.

We should keep in mind a couple of important points about the sendRedi-
rect() method. We cannot call this method if the response is committed—that is,
if the response header has already been sent to the browser. If we do, the method will
throw a java.lang.IllegalStateException. For example, the following
code will generate an IllegalStateException:

public void doGet(HttpServletRequest req, HttpServletResponse res)
{
 PrintWriter pw = res.getWriter();
 pw.println("<html><body>Hello World!</body></html>");
 pw.flush();

 res.sendRedirect("http://www.cnn.com");
}

In this code, we are forcing the servlet container to send the header and the generated
text to the browser immediately by calling pw.flush(). The response is said to be
committed at this point. Calling sendRedirect() after committing the response
causes the servlet container to throw an IllegalStateException.

NOTE Another important point to understand about sendRedirect() is that
the browser goes to the second resource only after it receives the redirect
message from the first resource. In that sense, sendRedirect() is not
transparent to the browser. In other words, the servlet sends a message tell-
ing the browser to get the resource from elsewhere.

Sends the response
Tries to redirect
44 CHAPTER 4 THE SERVLET MODEL

Licensed to Tricia Fu <tricia.fu@gmail.com>

Sending status codes for error conditions

HTTP defines status codes for common error conditions such as Resource not found,
Resource moved permanently, and Unauthorized access. All such codes are defined in the
HttpServletResponse interface as constants. HttpServletResponse also pro-
vides sendError(int status_code) and sendError(int status_code,
String message) methods that send a status code to the client. For example, if a
servlet finds out that the client should not have access to its output, it may call

 response.sendError(HttpServletResponse.SC_UNAUTHORIZED);

When the browser receives this status code, it displays an appropriate message to
the user.

For a complete list of status codes, refer to the API documentation on Http-
ServletResponse.

Quizlet
Q: Which methods should you use to do the following?

1 Write HTML tags to the output.

2 Specify that the content of the response is a binary file.

3 Send a binary file to the browser.

4 Add a header to a response.

5 Redirect a browser to another resource.

A: 1 First, get the PrintWriter using ServletResponse.getWriter()
and then call PrintWriter.print("<html tags>");

2 Use ServletResponse.setContentType(String content-
type);

3 Use ServletResponse.getOutputStream(); and then Out-
putStream.write(bytes);

4 Use HttpServletResponse.setHeader("name", "value");

5 Use HttpServletResponse.sendRedirect(String url-
string);

4.5 SERVLET LIFE CYCLE

By now, it should be very clear that a servlet receives a request, processes it, and sends
a response back using the doXXX() methods. There is, however, a little bit more to
understand than just the doXXX() methods. Before a servlet can service the client
requests, a servlet container must take certain steps in order to bring the servlet to a
state in which it is ready to service the requests. The first step is loading and instanti-
ating the servlet class; the servlet is now considered to be in the loaded state. The sec-
SERVLET LIFE CYCLE 45

ond step is initializing the servlet instance. Once the servlet is in the initialized state,

Licensed to Tricia Fu <tricia.fu@gmail.com>

the container can invoke its service() method whenever it receives a request from
the client. There may be times when the container will call the destroy() method
on the servlet instance to put it in the destroyed state. Finally, when the servlet con-
tainer shuts down, it must unload the servlet instance. Figure 4.2 shows these servlet
states and their transitions.

These states constitute the life cycle of a servlet. Let’s take a closer look at them.

4.5.1 Loading and instantiating a servlet

When we start up a servlet container, it looks for a set of configuration files, also called
the deployment descriptors, that describe all the web applications. Each web applica-
tion has its own deployment descriptor file, web.xml, which includes an entry for
each of the servlets it uses. An entry specifies the name of the servlet and a Java class name
for the servlet. The servlet container creates an instance of the given servlet class using
the method Class.forName(className).newInstance(). However, to do
this the servlet class must have a public constructor with no arguments. Typically, we
do not define any constructor in the servlet class. We let the Java compiler add the
default constructor. At this time, the servlet is loaded.

4.5.2 Initializing a servlet

It is entirely possible that we will want to initialize the servlet with some data when it
is instantiated. How can we do that if we do not define a constructor? Good question.
It is exactly for this reason that once the container creates the servlet instance, it calls
the init(ServletConfig) method on this newly created instance. The
ServletConfig object contains all the initialization parameters that we specify in
the deployment descriptor of the web application. We will see how these parameters
can be specified in the web.xml file in section 4.6.2. The servlet is initialized after
the init() method returns.

This process of initializing a servlet using the initialization parameters from the

Figure 4.2 Servlet state transition diagram
46 CHAPTER 4 THE SERVLET MODEL

ServletConfig object is quite important in order to ensure the reusability of a

Licensed to Tricia Fu <tricia.fu@gmail.com>

servlet. For example, if we wanted to create a database connection in the servlet we
would not want to hard-code the username/password and the database URL in the
servlet. The init() method allows us to specify them in the deployment descriptor.
The values in the deployment descriptor can be changed as needed without affecting
the servlet code. When the servlet initializes, it can read the values in its init()
method and make the connection.

It does not make sense to initialize an object repeatedly; therefore, the framework
guarantees that the servlet container will call the init() method once and only once
on a servlet instance.

NOTE If you look up the API for the GenericServlet class, you will see that it
has two init() methods: one with a parameter of type ServletConfig
as required by the Servlet interface and one with no parameters. The no
parameter init() method is a convenience method that you can override
in your servlet class. If you override the init(ServletConfig con-
fig) method, you will have to include a call to super.init(config)
in the method so that the GenericServlet can store a reference to the
config object for future use. To save you from doing that, the Generic-
Servlet’s init(ServletConfig) method makes a call to the Gener-
icServlet’s no parameter init() method, which you can implement
freely. To get the ServletConfig object in the no parameter init()
method, you can call the getServletConfig() method implemented
by the GenericServlet class.

Preinitializing a servlet

Usually, a servlet container does not initialize the servlets as soon as it starts up. It ini-
tializes a servlet when it receives a request for that servlet for the first time. This is
called lazy loading. Although this process greatly improves the startup time of the serv-
let container, it has a drawback. If the servlet performs many tasks at the time of ini-
tialization, such as caching static data from a database on initialization, the client that
sends the first request will have a poor response time. In many cases, this is unac-
ceptable. The servlet specification defines the <load-on-startup> element,
which can be specified in the deployment descriptor to make the servlet container load
and initialize the servlet as soon as it starts up. This process of loading a servlet before
any request comes in is called preloading, or preinitializing, a servlet.

4.5.3 Servicing client requests

After the servlet instance is properly initialized, it is ready to service client requests.
When the servlet container receives requests for this servlet, it will dispatch them to
the servlet instance by calling the Servlet.service(ServletRequest,
ServletResponse) method.
SERVLET LIFE CYCLE 47

Licensed to Tricia Fu <tricia.fu@gmail.com>

4.5.4 Destroying a servlet

If the servlet container decides that it no longer needs a servlet instance, it calls the
destroy() method on the servlet instance. In this method, the servlet should clean
up the resources, such as database connections that it acquired in the init()
method. Once this method is called, the servlet instance will be out of service and the
container will never call the service() method on this instance. The servlet con-
tainer cannot reuse this instance in any way. From this state, a servlet instance may
only go to the unloaded state. Before calling the destroy() method, the servlet con-
tainer waits for the remaining threads that are executing the servlet’s service()
method to finish.

A servlet container may destroy a servlet if it is running low on resources and no
request has arrived for a servlet in a long time. Similarly, if the servlet container main-
tains a pool of servlet instances, it may create and destroy the instances from time to
time as required. A servlet container may also destroy a servlet if it is shutting down.

4.5.5 Unloading a servlet

Once destroyed, the servlet instance may be garbage collected, in which case the servlet
instance is said to be unloaded. If the servlet has been destroyed because the servlet con-
tainer is shutting down, the servlet class will also be unloaded.

4.5.6 Servlet state transition from

the servlet container’s perspective

Figure 4.3 illustrates the relationship between the servlet container and the life-cycle
phases of a servlet.

A servlet goes from the unloaded to the loaded state when a servlet container loads
the servlet class and instantiates an object of the class. The servlet container initializes the
servlet object by calling its init() method, thereby putting it in the initialized state.

The servlet stays in the initialized state until the servlet container decides to destroy
the servlet. From the initialized state, the servlet enters the servicing state whenever the
servlet container calls its service() method in order to process client requests.

The servlet enters the destroyed state when the servlet container calls its destroy()
method. Finally, the servlet goes to the unloaded state when the servlet instance is gar-
bage collected.

Table 4.8 summarizes all the servlet life-cycle methods.

Table 4.8 Servlet life-cycle methods as defined in servlet interface

Method Description

void init(ServletConfig) The servlet container calls this method to initialize the
servlet.

void service(ServletRequest,
ServletResponse)

The servlet container calls this method to service client
requests.
48 CHAPTER 4 THE SERVLET MODEL

void destroy() The servlet container calls this method when it decides
to unload the servlet.

Licensed to Tricia Fu <tricia.fu@gmail.com>

NOTE A servlet container calls the init(ServletConfig) method on a servlet
object only once. However, it is possible that it will create multiple servlet
objects of the same servlet class if more than one <servlet> element is
defined in the web.xml file having the same servlet class names. You can
do this if you want to have multiple sets of initialization parameters. For
example, you may want one instance to connect to one database and a sec-
ond instance to connect to another database.

Quizlet
Q: Which method does the servlet container call on a servlet to initialize

Figure 4.3 The servlet life cycle from the servlet container’s perspective
SERVLET LIFE CYCLE 49

the servlet?

Licensed to Tricia Fu <tricia.fu@gmail.com>

A: The init(javax.servlet.ServletConfig) method of the
javax.servlet.Servlet interface. The javax.servlet.
GenericServlet class implements this method.

4.6 SERVLETCONFIG: A CLOSER LOOK

We learned in the previous section that the servlet container passes a Servlet-
Config object in the init(ServletConfig) method of the servlet. In this
section, we will look at the details of ServletConfig that you need to under-
stand for the exam.

4.6.1 ServletConfig methods

The ServletConfig interface is defined in the javax.servlet package and is
rather simple to use. It provides four methods, as shown in table 4.9.

Notice that ServletConfig provides methods only to retrieve parameters. You can-
not add or set parameters to the ServletConfig object.

A servlet container takes the information specified about a servlet in the deploy-
ment descriptor and wraps it into a ServletConfig object. This information can
then be retrieved by the servlet at the time of its initialization.

4.6.2 Example: a servlet and its deployment descriptor

To really understand the ServletConfig methods, you first need to understand
how to specify the initialization parameters in the deployment descriptor. The
web.xml file shown in listing 4.6 declares a servlet and specifies four initialization
parameters for the servlet. Later, we will use these parameters in our servlet to make a
connection to the database.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

Table 4.9 ServletConfig methods for retrieving initialization parameters

Method Description

String getInitParameter
(String name)

Returns the value of the parameter or null if no such parame-
ter is available.

Enumeration
getInitParameterNames()

Returns an Enumeration of Strings for all the parameter
names.

ServletContext
getServletContext()

Returns the ServletContext for this servlet.

String getServletName() Returns the servlet name as specified in the configuration file.

Listing 4.6 The web.xml file specifying init parameters
50 CHAPTER 4 THE SERVLET MODEL

 "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

Licensed to Tricia Fu <tricia.fu@gmail.com>

<web-app>

 <servlet>
 <servlet-name>TestServlet</servlet-name>
 <servlet-class>TestServlet</servlet-class>
 <init-param>
 <param-name>driverclassname</param-name>
 <param-value>sun.jdbc.odbc.JdbcOdbcDriver</param-value>
 </init-param>

 <init-param>
 <param-name>dburl</param-name>
 <param-value>jdbc:odbc:MySQLODBC</param-value>
 </init-param>
 <init-param>
 <param-name>username</param-name>
 <param-value>testuser</param-value>
 </init-param>
 <init-param>
 <param-name>password</param-name>
 <param-value>test</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

</web-app>

We will discuss the complete structure of a deployment descriptor in chapter 5, but for
now, just note that the above listing has one <servlet> element, which defines a
servlet named TestServlet. The <servlet> element has four <init-param>
elements, which define four parameters: driverclassname, dburl, username,
and password. Notice the <load-on-startup> element, which ensures that this
servlet will be loaded as soon as the container starts up.

Now we are ready to examine the ServletConfig methods in action.
Listing 4.7 shows the complete code for the TestServlet servlet, which uses the
initialization parameters we defined in the deployment descriptor (listing 4.6) to con-
nect to a database.

import java.io.*;
import java.util.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class TestServlet extends HttpServlet
{

Defines a servlet Defines a parameter
and specifies its
name and value

Listing 4.7 TestServlet.java; making use of init parameters
SERVLETCONFIG: A CLOSER LOOK 51

 Connection dbConnection;

Licensed to Tricia Fu <tricia.fu@gmail.com>

 public void init()
 {
 System.out.println(getServletName()+" : Initializing...");

 ServletConfig config = getServletConfig();

 String driverClassName =
 config.getInitParameter("driverclassname");

 String dbURL = config.getInitParameter("dburl");
 String username = config.getInitParameter("username");
 String password = config.getInitParameter("password");

 //Load the driver class
 Class.forName(driverClassName);

 //get a database connection
 dbConnection =
 DriverManager.getConnection(dbURL,username,password);

 System.out.println("Initialized.");
 }

 public void service(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, java.io.IOException
 {
 //get the requested data from the database and
 //generate an HTML page.
 }

 public void destroy()
 {
 try
 {
 dbConnection.close();
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 }
}

The above servlet reads the initialization parameters specified in the deployment
descriptor and makes a connection to the database in the init() method. It also
uses the getServletName() method to print a debug statement on the console.
The getServletName() method returns the name of the servlet as defined in
the <servlet-name> element of the deployment descriptor. Observe the use of the
destroy() method to close the connection.

Creates connection in init()

Retrieves
parameters

Cleans up the resources
52 CHAPTER 4 THE SERVLET MODEL

Licensed to Tricia Fu <tricia.fu@gmail.com>

4.7 SERVLETCONTEXT: A CLOSER LOOK

We can think of the ServletContext interface as a window for a servlet to view its
environment. A servlet can use this interface to get information, such as initialization
parameters for the web application or the servlet container’s version. This interface also
provides utility methods for retrieving the Multipurpose Internet Mail Extensions
(MIME) type for a file, for retrieving shared resources (such as property files), for log-
ging, and so forth. Every web application has one and only one ServletContext,
and it is accessible to all the active resources of that application. It is also used by the
servlets to share data with one another.

It is important to have a thorough understanding of ServletContext, since the
exam contains many questions about this interface. This book is organized according
to the exam objectives, and we will discuss the various ServletContext methods
in different chapters as they apply to those objectives.

In this section, we will work with the getResource() and getResourceAs-
Stream() methods. These methods are used by a servlet to access any resource with-
out worrying about where the resource actually resides.

For a detailed description of these methods, you should refer to the API documen-
tation. Table 4.10 provides a brief description of each.

If you recall from listing 4.5, in which we sent a JAR file to the browser, we had hard-
coded the JAR filename in the line:

 File f = new File("test.jar");

The code in listing 4.8 uses the getResource() method to specify the filename
independently of the file system.

public void service(HttpServletRequest req,
 HttpServletResponse res)
 throws javax.servlet.ServletException,

Table 4.10 ServletContext methods for retrieving a resource

Method Description

java.net.URL getResource
(String path)

This method returns a java.net.URL object for the resource
that is mapped to the given path. Although the path should start
with / it is not an absolute path. It is relative to the document
root of this web application. For instance, if you pass a path to a
JSP file, it will give you the unprocessed data, i.e., in this case,
the JSP source code, when you read the contents.

java.io.InputStream
getResourceAs Stream
(String path)

This is a shortcut method if you just want to get an Input
Stream out of the resource. It is equivalent to getRe-
source(path).openStream().

Listing 4.8 Making use of ServletContext.getResource()
SERVLETCONTEXT: A CLOSER LOOK 53

 java.io.IOException
 {

Licensed to Tricia Fu <tricia.fu@gmail.com>

 res.setContentType("application/jar");

 OutputStream os = res.getOutputStream();

 //1K buffer
 byte[] bytearray = new byte[1024];

 ServletContext context = getServletContext();
 URL url = context.getResource("/files/test.jar");

 InputStream is = url.openStream();

 int bytesread = 0;
 while((bytesread = is.read(bytearray)) != -1)
 {
 os.write(bytearray, 0, bytesread);
 }
 os.flush();
 is.close();

 }

In listing 4.8, we have specified a relative path to the file test.jar. This allows us
to deploy this servlet anywhere without worrying about the absolute location of the
file. As long as test.jar is available under the <webappdirectory>\files
directory, it can be found.

Here are the limitations of the getResource() and getResourceAs-
Stream() methods:

• You cannot pass a URL of any active resource—for example, a JSP page or serv-
let—to this method.

• If used improperly, this method can become a security hole; it can read all of the
files that belong to this web application, including the files under the WEB-INF
directory of this web application.

A servlet can, of course, access a resource directly by converting a relative path to an
absolute path using the getRealPath(String relativePath) method of
ServletContext. However, the problem with this approach is that it is not helpful
when the resource is inside a JAR file. It is also useless when the servlet is running in a
distributed environment where the resource may reside on a different machine. In such
situations, the getResource() method comes handy.

4.8 BEYOND SERVLET BASICS

Until now, we have been discussing servlets from the point of view of just one servlet.
But in the real world, having just one servlet to do all the tasks is not practical. Typi-
cally, we divide the business process into multiple tasks. For example, consider a

Returns a URL
object to the file
54 CHAPTER 4 THE SERVLET MODEL

grossly simplified business process of a bank. A user should be able to

Licensed to Tricia Fu <tricia.fu@gmail.com>

• Open an account

• View the account balance

• Make deposits

• Make withdrawals

• Close the account

Besides these activities, many other business rules need to be addressed as well; for
example, a user should not be able to view or withdraw from anyone else’s account.

We usually break up the whole business process into different tasks and have one
servlet focus on one task. In the example described above, we can have a Login-
Servlet that allows a user to sign up and log in/out, and an AccountServlet
that allows users to view their account balance and deposit or withdraw money.

To implement the required functionality, the servlets will have to coordinate their
processes and share the data. For example, if a user directly tries to access an account,
AccountServlet should be able to determine the user’s login status, and it should
redirect the user to the login page if he is not logged in. On the other hand, once a
user logs in, LoginServlet should be able to share the userid with Account-
Servlet so that AccountServlet can display the status of the account without
asking for the userid again.

The Servlet API provides elegant ways to share data and to coordinate the servlet
processes. We will discuss these ways in the following sections.

4.8.1 Sharing the data (attribute scopes)

Data is shared between the servlets using the rendezvous concept. One servlet puts the
data in a well-known place, which acts as a container, and other servlets access the data
from that place. These well-known containers are the ServletRequest object, the
HttpSession object, and the ServletContext object. All three objects provide
a setAttribute(String name, Object value) method (to put the data in
the container) and an Object getAttribute(String name) method (to access
the data).

Although data can be shared using any of these containers, there is a difference in the
visibility of the data present in these containers. Simply put, objects shared using Serv-
letRequest are accessible only for the life of a request, objects shared using
HttpSession are accessible only for the life of the session, and objects shared
using ServletContext are accessible for the life of the web application. To
understand this difference clearly, consider the following situations where we have dif-
ferent requirements for sharing the data:

• The banking application that we described earlier needs to provide credit
reports for the users. So, we add a ReporterServlet which, given a social
security number (SSN), can generate a credit report for any user. When a user
BEYOND SERVLET BASICS 55

asks for his credit report, AccountServlet should be able to retrieve the SSN

Licensed to Tricia Fu <tricia.fu@gmail.com>

and pass it on to ReporterServlet. In this case, AccountServlet
should be able to share the SSN with ReporterServlet only for that
request. Once the request is serviced, ReporterServlet should not be able
to access the SSN anymore.

• As described before, LoginServlet should be able to share the userid with
AccountServlet, but AccountServlet should be able to access only the
userid for the user whose request it is servicing. Further, it should be able to
access it for as long as the user is logged in.

• All three servlets—LoginServlet, AccountServlet, and Reporter-
Servlet—need to access the same database, and so driverclassname,
dburl, dbusername, and dbpassword should be shared with all the serv-
lets all of the time.

The three containers that we mentioned earlier help us in these situations:

• If we put an object in a javax.servlet.ServletRequest object, it can
be shared with any servlet that processes that request. We will see how to pass
this request object around in section 4.8.2.

• If a servlet puts an object in a javax.servlet.http.HttpSession
object, it can be accessed by any servlet anytime but only while the servlet is ser-
vicing a request for the same client who put the object into the session, and only
while that session is valid. We will learn about this in detail in chapter 8, “Ses-
sion management.”

• If a servlet puts an object in the java.servlet.ServletContext
object, it can be accessed anytime by any servlet of the same web application.
We will work with the ServletContext object in chapter 6, “The servlet
container model.”

All three interfaces provide the same set of three methods for setting and getting
attributes, as shown in table 4.11.

We will build a simple web application that uses these concepts in section 4.8.3.

Table 4.11 The methods available in ServletRequest, HttpSession, and

ServletContext for getting and setting attributes

Method Description

Object getAttribute
(String name)

This method returns the value mapped to this name or null if
no such name exists.

Enumeration
getAttributeNames()

This method returns an Enumeration of Strings for all the
names that are available in this container.

void setAttribute
(String name, Object value)

The method adds the given name-value pair to this container.
If the name is already present, then the old value is removed.
56 CHAPTER 4 THE SERVLET MODEL

Licensed to Tricia Fu <tricia.fu@gmail.com>

4.8.2 Coordinating servlets using RequestDispatcher

Again, with respect to the banking application, if a user is not logged in,
AccountServlet should forward the request to LoginServlet. Similarly,
once a user enters her user ID/password, LoginServlet should forward the request
to AccountServlet.

The Servlet API includes the javax.servlet.RequestDispatcher inter-
face, which allows us to do this. It has the two methods shown in table 4.12.

NOTE An important difference between RequestDispatcher.forward()
and HttpServletResponse.sendRedirect() (which we discussed
in section 4.4) is that RequestDispatcher.forward() is completely
handled on the server side while HttpServletResponse.sendRedi-
rect() sends a redirect message to the browser. In that sense,
RequestDispatcher.forward() is transparent to the browser while
HttpServletResponse.sendRedirect() is not.

This sounds good, but how do we obtain a RequestDispatcher in the first place?
Simple: both javax.servlet.ServletContext and javax.servlet.
ServletRequest have the method shown in table 4.13.

Table 4.12 Methods provided by RequestDispatcher for forwarding/including a request

to/from another resource

Method Description

void forward
(ServletRequest
request,
ServletResponse
response)

This method allows a servlet to process a request partially and
then forward the request to another servlet for generating the final
response. It can also be used to forward a request from one active
resource (a servlet or a JSP page) to another resource (servlet, JSP
file, or HTML file) on the server. This method can be called only if
the response is not committed; otherwise, it will throw an
IllegalStateException.

void include
(ServletRequest
request,
ServletResponse
response)

This method allows the contents of another resource to be
included with the response being generated by the calling
resource. Unlike forwarding, control is not permanently passed to
another resource. Instead, it is passed temporarily so that the other
resource can partially process the request, and then the including
servlet/JSP page can take over the request again and service it to
completion. The included resource cannot set the headers or sta-
tus code of the response; attempts to do so are ignored.

Table 4.13 The method in ServletContext and ServletRequest for getting a

RequestDispatcher

Method Description

public RequestDispatcher
getRequestDispatcher
(String path)

The path parameter is the path to the resource; for example,
request.getRequestDispatcher("/servlet/
AccountServlet").
BEYOND SERVLET BASICS 57

It will not accept a path outside the current web application.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Besides the getRequestDispatcher() method, the ServletContext inter-
face also provides a getNamedDispatcher() method, which allows us to dispatch
requests to a component by specifying its name (as given in the deployment descriptor)
instead of a full URI path.

There is an important difference between the getRequestDispatcher()
method of ServletContext and that of ServletRequest: you can pass a relative
path to the getRequestDispatcher() method of ServletRequest but not to
the getRequestDispatcher() method of ServletContext. For example,
request.getRequestDispatcher("../html/copyright.html") is valid,
and the getRequestDispatcher() method of ServletRequest will evaluate
the path relative to the path of the request. For the getRequestDispatcher()
method of ServletContext, the path parameter cannot be relative and must start
with /. This makes sense because ServletRequest has a current request path to
evaluate the relative path while ServletContext does not.

NOTE You cannot directly forward or include a request to a resource in another
web application. To do this, you need to get a reference to the Servlet-
Context of the other web application using this.getServlet-
Context().getContext(uripath). Using this servlet context reference,
you can retrieve an appropriate RequestDispatcher object as usual.

4.8.3 Accessing request-scoped attributes

with RequestDispatcher

One important aspect of the new servlet specification involves the ability of an included
or forwarded servlet to access request information through attributes. The name of the
attribute depends on whether RequestDispatcher.include() or Request-
Dispatcher.forward() was invoked. The attributes are listed in table 4.14.

The values of these attributes provide the same information as the HttpServlet-
Request methods getRequestURI, getContextPath, getServletPath, get-
PathInfo, and getQueryString. They can be accessed with getAttribute()
just like regular request attributes. These values correspond to the parameters of the

Table 4.14 Attributes available to included/forwarded servlets for obtaining information about

the request

Attribute for included servlet Attribute for forwarded servlet

javax.servlet.include.request_uri javax.servlet.forward.request_uri

javax.servlet.include.context_path javax.servlet.forward.context_path

javax.servlet.include.servlet_path javax.servlet.forward.servlet_path

javax.servlet.include.path_info javax.servlet.forward.path_info

javax.servlet.include.query_string javax.servlet.forward.query_string
58 CHAPTER 4 THE SERVLET MODEL

original request, without regard to further forwarding.

Licensed to Tricia Fu <tricia.fu@gmail.com>

For example, if a forwarded servlet invokes req.getServletPath(), the result
will be the same as if the java.servlet.include.servlet_path attribute had
been acquired with req.getAttribute(?javax.servlet.include.serv-
let_path?).

NOTE These attributes can’t be set if the RequestDispatcher was obtained
with the getNamedDispatcher() method.

4.8.4 Putting it all together: A simple banking application

Let’s build the banking application that we have been discussing, using two servlets:

• LoginServlet

• AccountServlet

LoginServlet

Listing 4.9 contains the code for LoginServlet that verifies the user ID and pass-
word and forwards the request to AccountServlet.

package chapter4;

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class LoginServlet extends HttpServlet
{
 Hashtable users = new Hashtable();

 //This method will be called if somebody types the URL
 //for this servlet in the address field of the browser.
 public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 doPost(req, res);
 }

 //This method retrieves the userid and password, verifies them,
 //and if valid, it forwards the request to AccountServlet.
 //Otherwise, it forwards the request to the login page.
 public void doPost(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 String userid = req.getParameter("userid");
 String password = req.getParameter("password");

 if(userid != null && password != null &&
 password.equals(users.get(userid)))

Listing 4.9 LoginServlet.java for a simple banking web application

Retrieves the
user ID/password
BEYOND SERVLET BASICS 59

 {
 req.setAttribute("userid", userid);

Sets the userid
in the request

Licensed to Tricia Fu <tricia.fu@gmail.com>

 ServletContext ct = getServletContext();
 RequestDispatcher rd =
 ct.getRequestDispatcher("/servlet/AccountServlet");

 rd.forward(req, res);

 return;
 }
 else
 {
 RequestDispatcher rd =
 req.getRequestDispatcher("../login.html");
 rd.forward(req, res);
 return;
 }
 }

 //initialize some userids and passwords
 public void init()
 {
 users.put("ann", "aaa");
 users.put("john", "jjj");
 users.put("mark", "mmm");
 }
}

The logic of authenticating a user in the servlet in listing 4.9 is simple. We initialize a
Hashtable to store some user IDs and passwords. In the doPost() method, the
servlet validates the credentials given by the user and forwards the request to either
AccountServlet or to the login page.

Observe the use of an absolute path used in the creation of RequestDis-
patcher for AccountServlet and the use of a relative path in the creation of
RequestDispatcher for the login page.

Login.html

To access our application, a user will go to the login page. This page will allow the user
to enter her user ID and password. Listing 4.10 contains the code for the login page.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>
<head>
 <title>SCWCD_Example_1_3</title>
</head>

<body>

<h3>Please enter your userid and password to see your account statement:</
h3><p>

Gets the
Request-
Dispatcher
for Account-
Servlet

Forwards the request
to AccountServlet

Gets the Request-
Dispatcher for
login.html

Listing 4.10 login.html for capturing the userid and password
60 CHAPTER 4 THE SERVLET MODEL

<form action="servlet/LoginServlet" method="POST">

Sends the data to
LoginServlet using POST

Licensed to Tricia Fu <tricia.fu@gmail.com>

Userid : <input type="text" name="userid">

Password : <input type="password" name="password">

<input type="submit" value="Show Statement">
</form>

</body>
</html>

AccountServlet

Listing 4.11 contains the code for AccountServlet. Its job is to generate an HTML
page that displays the user’s account information.

package chapter4;

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class AccountServlet extends HttpServlet
{
 Hashtable data = new Hashtable();

 //This method will be called if somebody types the URL
 //for this servlet in the address field of the browser.
 public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws javax.servlet.ServletException, java.io.IOException
 {
 doPost(req, res);
 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)
 throws javax.servlet.ServletException, java.io.IOException
 {

 String userid = (String) req.getAttribute("userid");

 if(userid != null)
 {
 // Retrieve the data and generate the page dynamically.
 String[] records = (String[]) data.get(userid);

 PrintWriter pw = res.getWriter();
 pw.println("<html>");
 pw.println("<head>");
 pw.println("</head>");
 pw.println("<body>");
 pw.println("<h3>Account Status for "+userid+"
 at the start of previous three months...</h3><p>");

Listing 4.11 AccountServlet.java

Gets the
userid set by
LoginServlet
BEYOND SERVLET BASICS 61

 for(int i=0; i<records.length; i++)

Licensed to Tricia Fu <tricia.fu@gmail.com>

 {
 pw.println(records[i]+"
");
 }

 pw.println("</body>");
 pw.println("</html>");
 }
 else
 {

 //No user ID. Send login.html to the user.
 //observe the use of relative path.
 RequestDispatcher rd =
 req.getRequestDispatcher("../login.html");
 rd.forward(req, res);
 }

 }

 //initialize some data.
 public void init()
 {
 data.put("ann", new String[]{ "01/01/2002 : 1000.00",
 "01/02/2002 : 1300.00", "01/03/2002 : 900.00"});
 data.put("john", new String[]{ "01/01/2002 : 4500.00",
 "01/02/2002 : 2100.00", "01/03/2002 : 2600.00"});
 data.put("mark", new String[]{ "01/01/2002 : 7800.00",
 "01/02/2002 : 5200.00", "01/03/2002 : 1900.00"});
 }
}

Running the application

We have provided the above examples on the Manning web site. Just copy the
chapter04 directory from the web site to the webapps directory of your Tomcat
installation. For example, if you have installed Tomcat to c:\jakarta-tomcat-
5.0.25, copy the chapter04 directory to c:\jakarta-tomcat-5.0.25\
webapps. Once you restart Tomcat, you can go to http://localhost:8080/
chapter04/login.html.

You should observe the following:

• If you enter an invalid user ID/password, you get the login page.

• If you enter a valid user ID/password, you get the statement page.

You may also notice that the user needs to enter the user ID and password every time
he tries to access AccountServlet. This is indeed annoying. There should be some
way for AccountServlet to remember the user ID during the time in which it is
interacting with the user. There is: that’s where the concept of sessions comes into the

Creates a request
dispatcher using
the relative path
62 CHAPTER 4 THE SERVLET MODEL

picture. We will discuss sessions in detail in chapter 8.

Licensed to Tricia Fu <tricia.fu@gmail.com>

4.9 SUMMARY

In this chapter, we discussed the basics of the servlet model. An HttpServlet has
methods, which can be overridden, that correspond to the HTTP methods of the
request. The service(HttpServletRequest, HttpServletResponse)
method of HttpServlet is responsible for calling the appropriate method on the
servlet depending on the request.

Using HttpServletRequest and HttpServletResponse, we learned how
to create a dynamic response by analyzing the request. We also discussed the life-cycle
phases of a servlet, including loading, initializing, destroying, and unloading the serv-
let. The ServletRequest, HttpSession, and ServletContext objects are
the containers used to share data within the three scopes of a servlet: request, ses-
sion, and application.

Finally, we developed a small web application, in which we shared data between
two servlets and coordinated their execution.

You should now be ready to answer exam questions based on the HTTP methods
GET, POST, and HEAD and the methods of a servlet that correspond to these HTTP
methods. You should be able to answer the questions based on the servlet life cycle and
the usage of servlets and related classes to retrieve request header information, form
parameters, and text and binary streams. Finally, you should be able to answer ques-
tions based on attribute sharing using the request, session, and application
scopes.

In the next chapter, we will take a closer look at the structure of a web application,
the deployment descriptor, and the way in which a request is mapped to a servlet.

4.10 REVIEW QUESTIONS

1. Which method in the HttpServlet class services the HTTP POST request?
(Select one)

a doPost(ServletRequest, ServletResponse)

b doPOST(ServletRequest, ServletResponse)

c servicePost(HttpServletRequest, HttpServletResponse)
d doPost(HttpServletRequest, HttpServletResponse)

2. Consider the following HTML page code:

 <html><body>
 POST
 </body></html>

Which method of HelloServlet will be invoked when the hyperlink dis-
played by the above page is clicked? (Select one)
REVIEW QUESTIONS 63

a doGet

b doPost

Licensed to Tricia Fu <tricia.fu@gmail.com>

c doForm

d doHref

e serviceGet

3. Consider the following code for the doGet() method:

 public void doGet(HttpServletRequest req,
 HttpServletResponse res)

 {
 PrintWriter out = res.getWriter();
 out.println("<html><body>Hello</body></html>");

 //1

 if(req.getParameter("name") == null)
 {
 res.sendError(HttpServletResponse.SC_UNAUTHORIZED);
 }
 }

Which of the following lines can be inserted at //1 so that the above code does
not throw any exception? (Select one)

a if (! res.isSent())

b if (! res.isCommitted())

c if (! res.isDone())

d if (! res.isFlushed())

e if (! res.flush())

4. Which of the following lines would initialize the out variable for sending a
Microsoft Word file to the browser? (Select one)

a PrintWriter out = response.getServletOutput();

b PrintWriter out = response.getPrintWriter();

c OutputStream out = response.getWriter();

d PrintWriter out = response.getOutputStream();

e OutputStream out = response.getOutputStream();

f ServletOutputStream out = response.getServletOutputStream();

5. You need to send a GIF file to the browser. Which of the following lines should be
called after (or before) a call to response.getOutputStream()? (Select one)

a response.setContentType("image/gif"); Before
b response.setContentType("image/gif"); After
c response.setDataType("image/gif"); Before
d response.setDataType("image/gif"); After
e response.setStreamType("image/gif"); Before
f response.setStreamType("image/gif"); After
64 CHAPTER 4 THE SERVLET MODEL

Licensed to Tricia Fu <tricia.fu@gmail.com>

6. Consider the following HTML page code:

 <html><body>
 <form name="data" action="/servlet/DataServlet" method="POST">
 <input type="text" name="name">
 <input type="submit" name="submit">
 </form>
 </body></html>

Identify the two methods that can be used to retrieve the value of the name
parameter when the form is submitted.

a getParameter("name");

b getParameterValue("name");

c getParameterValues("name");

d getParameters("name");

e getValue("name");

f getName();

7. Which of the following methods would you use to retrieve header values from a
request? (Select two)

a getHeader() of ServletRequest
b getHeaderValue() of ServletRequest
c getHeader() of HttpServletRequest
d getHeaders() of ServletRequest
e getHeaders() of HttpServletRequest

8. Consider the following code:

 public void doGet(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException
 {

 if(req.getParameter("switch") == null)
 {
 //1
 }
 else
 {
 //other code
 }
 }

Which of the following lines can be inserted at //1 so that the request is redi-
rected to collectinfo.html page? (Select one)

a req.sendRedirect("collectinfo.html");
REVIEW QUESTIONS 65

b req.redirect("collectinfo.html");

c res.direct("collectinfo.html");

Licensed to Tricia Fu <tricia.fu@gmail.com>

d res.sendRedirect("collectinfo.html");

e this.sendRedirect("collectinfo.html");

f this.send("collectinfo.html");

9. Consider the following code:

 public void doGet(HttpServletRequest req,
 HttpServletResponse res)

 {
 HttpSession session = req.getSession();
 ServletContext ctx = this.getServletContext();

 if(req.getParameter("userid") != null)
 {
 String userid = req.getParameter("userid");
 //1
 }
 }

You want the userid parameter to be available only to the requests that come
from the same user. Which of the following lines would you insert at //1?
(Select one)

a session.setAttribute("userid", userid);

b req.setAttribute("userid", userid);

c ctx.addAttribute("userid", userid);

d session.addAttribute("userid", userid);

e this.addParameter("userid", userid);

f this.setAttribute("userid", userid);

10. Which of the following lines would you use to include the output of Data-
Servlet into any other servlet? (Select one)

a RequestDispatcher rd =

 request.getRequestDispatcher("/servlet/DataServlet");

rd.include(request, response);

b RequestDispatcher rd =

 request.getRequestDispatcher("/servlet/DataServlet");

rd.include(response);

c RequestDispatcher rd = request.getRequestDispatcher();

rd.include("/servlet/DataServlet", request, response);

d RequestDispatcher rd = request.getRequestDispatcher();

rd.include("/servlet/DataServlet", response);

e RequestDispatcher rd = request.getRequestDispatcher();

rd.include("/servlet/DataServlet");
66 CHAPTER 4 THE SERVLET MODEL

Licensed to Tricia Fu <tricia.fu@gmail.com>

C H A P T E R 5

Structure and deployment

5.1 Directory structure of a web application 68
5.2 The deployment descriptor: an overview 71
5.3 Summary 80

5.4 Review questions 80

EXAM OBJECTIVES

 2.1 Construct the file and directory structure of a Web application that may contain

• Static content,
• JSP pages,
• Servlet classes,
• The deployment descriptor (web.xml),
• Tag libraries,
• JAR files, and
• Java class files; and

Describe how to protect resource files from HTTP access
(Section 5.1)

 2.2 Describe the purpose and semantics of the deployment descriptor
(Section 5.2)

 2.3 Construct the correct structure of the deployment descriptor
(Section 5.2)
67

Licensed to Tricia Fu <tricia.fu@gmail.com>

 2.4 Explain the purpose of a WAR file, describe the contents of a WAR file, and describe
how one may be constructed
(Section 5.1.3)

INTRODUCTION

A web application consists of many resources, including servlets, JSP pages, utility
classes, third-party JAR files, HTML files, and so forth. Managing so many resources
can be a difficult task in itself; to complicate matters, the resources have dependencies.
For example, a servlet may depend on third-party JAR files containing ready-made
components, or a servlet may redirect a request to a JSP page. This requires the
resources to learn the location of the other resources. Furthermore, a web application
must be portable across different servlet containers.

Fortunately, to satisfy the above requirements, the Java Servlet Specification man-
dates that web applications be packaged in a standard way. In this chapter, we will dis-
cuss the way we package and deploy web applications.

5.1 DIRECTORY STRUCTURE OF
A WEB APPLICATION

The resources of a web application are kept in a structured hierarchy of directories.
The directory structure is well defined in terms of the placement of the resources and
files. Figure 5.1 shows a hypothetical web application named helloapp. To put the
structure in perspective, we’ve shown it in relationship to its location within the Tom-
cat directory structure.

The webapps directory under the Tomcat installation is the home directory of all
the web applications that it hosts. In the directory structure shown in figure 5.1, the
webapps directory contains the app1, sampleapp, and helloapp web applica-
tions. In the following sections, we will take a closer look at the directory structure of
the helloapp web application.

5.1.1 Understanding the document root directory

In figure 5.1, the helloapp directory is the document root for the helloapp web appli-
cation. A request for http://www.myserver.com/helloapp/index.html will
refer to the index.html file in the helloapp directory. All publicly accessible files
should go in this directory. It is very common to organize these files into multiple sub-
directories. A typical root directory looks like this:

 |-
 |- helloapp
 |- html (contains all the HTML files)
 |- jsp (contains all the JSP files)
 |- images (contains all the GIFs, JPEGs, BMPs)
 |- javascripts (contains all *.js files)
68 CHAPTER 5 STRUCTURE AND DEPLOYMENT

 |- index.html (default HTML file)
 |- WEB-INF

Licensed to Tricia Fu <tricia.fu@gmail.com>

In the above structure, an HTML file named hello.html can be accessed through
the URL http://www.myserver.com/helloapp/html/hello.html.

5.1.2 Understanding the WEB-INF directory

Every web application must have a WEB-INF directory directly under its root direc-
tory. Although it is physically located inside the document root directory, it is not con-
sidered a part of the document root; i.e., files in the WEB-INF directory are not served
to the clients. This directory contains three things:

• classes directory—The servlet class files and the class files needed to support the
servlets or JSP pages of this web application go in this directory if they have not
been included in a JAR file. The class files should be organized according to
their packages. At runtime, the servlet container adds this directory to the class-
path for this web application.

• lib directory—All the JAR files used by the web application, including the third-
party JAR files, go in this directory. For example, if a servlet uses JDBC to con-

Figure 5.1 The directory structure of a web application
DIRECTORY STRUCTURE OF A WEB APPLICATION 69

nect to a database, the JDBC driver JAR file should go here. We can also package

Licensed to Tricia Fu <tricia.fu@gmail.com>

the servlet classes in a JAR file and keep that file in this directory. At runtime,
the servlet container adds all the JAR files from this directory to the classpath for
this web application.

• web.xml file (also known as the deployment descriptor)—This file is the heart of
a web application, and every web application must have it. It contains the infor-
mation needed by the servlet container in order to run the web application,
such as servlet declarations and mappings, properties, authorization and secu-
rity constraints, and so forth. We will learn more about this file in section 5.2.

Quizlet
Q: Your web application includes an applet packaged as a JAR file. Which

directory would you keep the JAR file in?
A: Because an applet is only run on the client side, the applet JAR file

should be accessible to the clients. This means that it may be kept any-
where in the document root of the application except in the WEB-INF
directory and its subdirectories.

5.1.3 The web archive (WAR) file

Since a web application contains many files, it can be cumbersome to migrate the
application from one environment to another—for instance, from development to
production. To simplify the process, these files can be bundled into a single JAR file
but with the extension .war instead of .jar. The extension .war stands for web
archive and signifies that the file should be treated differently than a JAR file. For exam-
ple, if we place a WAR file in Tomcat’s webapps directory, Tomcat can be configured
to automatically extract its contents to a directory under webapps. The name of the
new directory is the same as the name of the WAR file without the extension.

In essence, a servlet container can install a WAR file as a web application without
manual intervention.

Creating a WAR file is simple. For example, to create a WAR file for the helloapp
web application, follow these steps:

1 From the DOS prompt (or $ prompt), go to the webapps\helloapp direc-
tory (c:\jakarta-tomcat-5.0.25\webapps\helloapp).

2 Jar the helloapp directory by using the jar utility:

 c:\jakarta-tomcat-5.0.25\webapps\helloapp>jar –cvf helloapp.war *

This will create a helloapp.war file in the webapps\helloapp directory.

5.1.4 Resource files and HTML access

When you create web applications, you may need to keep clients from accessing par-
ticular resources while allowing the web container to find them. To protect these files
from HTTP access, you should store them in the WEB-INF directory of a web appli-
70 CHAPTER 5 STRUCTURE AND DEPLOYMENT

cation or the META-INF directory of a WAR. Files in these directories remain visible
to the web container but can’t be served to the client.

Licensed to Tricia Fu <tricia.fu@gmail.com>

5.1.5 The default web application

Besides the web applications created by the users, a servlet container maintains a
default web application. This application handles all requests that do not match any
of the user-created web applications. It is similar to any other web application
except that we can access its resources without specifying its name or context path.
In Tomcat, the webapps\ROOT directory is set as the document root for the
default web application.

A default web application allows you to deploy individual JSPs, servlets, and static
content without prepackaging them into a separate application. For example, if you
want to test an individual JSP file named test.jsp, you can place it in the ROOT
directory instead of creating a separate application. You can access it through the URL
http://localhost:8080/test.jsp, and you can modify the deployment
descriptor of this application to add your own components, such as servlets, as needed.

5.2 THE DEPLOYMENT DESCRIPTOR: AN OVERVIEW

The deployment descriptor (web.xml) of a web application describes the web
application to the servlet container. As is evident from the extension of web.xml, it
is an XML file. To ensure portability across the servlet containers, the document type
definition (DTD) for this XML file is standardized by Sun. If you are new to XML tech-
nology, you should read the brief tutorial that we have provided in appendix B. It will
help you to understand this section.

Table 5.1 shows the properties that can be defined in a deployment descriptor.

Table 5.1 Properties defined in a deployment descriptor

Web Application Properties Short Description Discussed in:

Servlet Declarations Used to specify servlet properties. Chapter 5

Servlet Mappings Used to specify URL to servlet mapping. Chapter 5

Application Lifecycle Lis-
tener classes

Used to specify listener classes for
HttpSession Events and
ServletContextAttributeEvent.

Chapter 6

ServletContext Init Parame-
ters

Used to specify initialization parameters
for the web application.

Chapter 6

Filter Definitions and Filter
Mappings

Used to specify the filter. Chapter 7

Session Configuration Used to specify session timeout. Chapter 8

Security Constraints Used to specify security requirements of
the web application.

Chapter 9

Tag libraries Used to specify the tag libraries required
by JSP pages.

Chapter 15
THE DEPLOYMENT DESCRIPTOR: AN OVERVIEW 71

continued on next page

Licensed to Tricia Fu <tricia.fu@gmail.com>

We’ll discuss many of these properties throughout the book as they apply to the exam
objectives. In this section, we will look at the general structure of the deployment
descriptor, and we will learn how to define servlets and servlet mappings in a deploy-
ment descriptor.

5.2.1 Example: A simple deployment descriptor

Listing 5.1 shows the general structure of a simple deployment descriptor.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<web-app version="2.4"
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" >

 <display-name>Test Webapp</display-name>

 <context-param>
 <param-name>author</param-name>
 <param-value>john@abc.com</param-value>
 </context-param>

 <servlet>
 <servlet-name>test</servlet-name>
 <servlet-class>com.abc.TestServlet</servlet-class>
 <init-param>
 <param-name>greeting</param-name>
 <param-value>Good Morning</param-value>
 </init-param>
 </servlet>

 <servlet-mapping>
 <servlet-name>test</servlet-name>
 <url-pattern>/test/*</url-pattern>
 </servlet-mapping>

Welcome File list Used to specify the welcome files for
the web application.

Not needed for the exam

MIME Type Mappings Used to specify MIME types for com-
mon file extensions.

Not needed for the exam

JNDI names Used to specify JNDI names of the
EJBs.

Not needed for the exam

Table 5.1 Properties defined in a deployment descriptor (continued)

Web Application Properties Short Description Discussed in:

Listing 5.1 Simple deployment descriptor

Declares the XML version and
character set used in this file

Declares the
schema
definition for
this file

Specifies a parameter for
this web application

Specifies a servlet

Specifies a parameter for this servlet

Maps /test/*
to test servlet
72 CHAPTER 5 STRUCTURE AND DEPLOYMENT

 <mime-mapping>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <extension>zip</extension>
 <mime-type>application/zip</mime-type>
 </mime-mapping>

</web-app>

A web.xml file, like all XML files, starts with the line <?xml version="1.0"
encoding="ISO-8859-1">, which specifies the version of XML and the character
set it is using. What comes next depends on the version of the Servlet or JSP specifica-
tion you are targeting. If you do not use any specific features of JSP2.0 (for instance,
EL), and stick only to methods found in the 2.3 version of the Servlet spec, then a
DOCTYPE declaration specifying the location of the DTD would follow the first line:

 <!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
 2.3//EN" "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

If you want to use the latest features, you need to use the XML schema notation shown
here: version="2.4"

 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" >

The rest of the content must go under the <web-app> element, which is the root of
this XML file.

Now let’s look at the servlet-specific elements of the deployment descriptor that are
required by the exam.

5.2.2 Using the <servlet> element

Each <servlet> element under <web-app> defines a servlet for that web applica-
tion. The following is the definition of the <servlet> element as given by the DTD
for web.xml:

 <!ELEMENT servlet (icon?, servlet-name, display-name?,
 description?, (servlet-class|jsp-file), init-param*,
 load-on-startup?, security-role-ref*)>

The code that follows demonstrates a typical use of the <servlet> element within
a deployment descriptor:

 <servlet>

 <servlet-name>us-sales</servlet-name>

 <servlet-class>com.xyz.SalesServlet</servlet-class>

 <init-param>
 <param-name>region</param-name>
 <param-value>USA</param-value>
 </init-param>

The servlet name

The
servlet
class

The servlet
parameters
THE DEPLOYMENT DESCRIPTOR: AN OVERVIEW 73

 <init-param>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <param-name>limit</param-name>
 <param-value>200</param-value>
 <init-param>

 </servlet>

The servlet container instantiates the class of the servlet and associates it with the given
servlet name. Every parameter should be specified using the <init-param> element.
The above servlet definition tells the servlet container to create a servlet named us-
sales using the class com.xyz.SalesServlet. The container passes region
and limit as the initialization parameters through the ServletConfig object.

servlet-name

This element defines the name for the servlet. Clients can use this name to access the
servlet if Tomcat’s invoker servlet is turned on. For example, the servlet defined above
can be accessed through the URL http://www.myserver.com/servlet/us-
sales. This name is also used to define the URL to the servlet mapping for the serv-
let. This element is mandatory, and the name should be unique across the deployment
descriptor. We can retrieve the name of a servlet by using the ServletCon-
fig.getServletName() method.

servlet-class

This element specifies the Java class name that should be used by the servlet container
to instantiate this servlet. In the previous example, the servlet container will use the
com.xyz.SalesServlet class. This element is mandatory. This class, as well as all
the classes that it depends on, should be available in the classpath for this web appli-
cation. Remember that the classes directory and JAR files in the lib directory inside
WEB-INF are automatically added to the classpath by the servlet container, so there is
no need to set your classpath if you put the classes in either of these two places.

init-param

This element is used to pass initialization parameters to the servlet. We can have any
number of <init-param> elements in the <servlet> element. Each <init-
param> element must have one and only one set of <param-name> and <param-
value> subelements. <param-name> defines the name of the parameter and must
be unique across the servlet element. <param-value> defines the value for that
parameter. A servlet can retrieve the initialization parameters using the method Serv-
letConfig.getInitParameter("paramname").

Notice the name us-sales given to the above servlet. You can define another
servlet named euro-sales with the same servlet class and set the value of the
region parameter to europe. In such cases, multiple instances of the servlet class
will be created, one for each name.
74 CHAPTER 5 STRUCTURE AND DEPLOYMENT

Licensed to Tricia Fu <tricia.fu@gmail.com>

Quizlet
Q: How can you associate an array of values for an initialization parameter

of a servlet?
A: You can’t—at least not directly! The deployment descriptor does not

allow you to specify multiple parameters with the same name. So you
have to do something like this:

 <init-param>
 <param-name>countries</param-name>
 <param-value>Australia, Brazil, India, UK, US</param-value>
 <init-param>

You would then have to parse the param-value string in the servlet
and interpret the multiple values listed in the string.

5.2.3 Using the <servlet-mapping> element

Simply put, servlet mappings specify which URL patterns should be handled by
which servlet. The servlet container uses these mappings to invoke the appropriate
servlets depending on the actual URL. Here is the definition of the <servlet-
mapping> element:

 <!ELEMENT servlet-mapping (servlet-name, url-pattern)>

In an instance of servlet-mapping, servlet-name should contain the name of
one of the servlets defined using the <servlet> element, and url-pattern can
contain any string that we want to associate with this servlet.

The following are examples of using the <servlet-mapping> element in a
deployment descriptor:

 <servlet-mapping>
 <servlet-name>accountServlet</servlet-name>
 <url-pattern>/account/*</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>accountServlet</servlet-name>
 <url-pattern>/myaccount/*</url-pattern>
 </servlet-mapping>

In these mappings, we are associating /account and /myaccount URL patterns to
accountServlet. Whenever the container receives a request URL that starts with
<webapp name>/account or <webapp name>/myaccount, it will send that
request to accountServlet.

 A servlet container interprets the url-pattern according to the following rules:

• A string beginning with a / and ending with the /* characters is used for deter-
mining a servlet path mapping. We will discuss servlet paths in section 5.2.4.

• A string beginning with a *. prefix is used to map the request to a servlet that han-
THE DEPLOYMENT DESCRIPTOR: AN OVERVIEW 75

dles the extension specified in the string. For example, the following mapping will
direct all the requests ending with .pdf to pdfGeneratorServlet:

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <servlet-mapping>
 <servlet-name>pdfGeneratorServlet</servlet-name>
 <url-pattern>*.pdf</url-pattern>
 </servlet-mapping>

• A string containing only the / character indicates that servlet specified by the
mapping becomes the default servlet of the application. In this case, the servlet
path is the request URI minus the context path and the path info is null. We
will discuss context path and path info in the next section.

• All other strings are used as exact matches only. For example, the following
mapping will direct http://www.mycompany.com/report to report-
Servlet. However, it will not direct http://www.mycompany.com/
report/sales to reportServlet.

 <servlet-mapping>
 <servlet-name>reportServlet</servlet-name>
 <url-pattern>/report</url-pattern>
 </servlet-mapping>

5.2.4 Mapping a URL to a servlet

In the previous section, we learned how to specify the servlet mappings in the deploy-
ment descriptor of a web application. Now let’s look at how the container uses these
mappings to route a request to the appropriate servlet. Routing a request to a servlet is
a two-step process. First, the servlet container identifies the web application that the
request belongs to, and then it finds an appropriate servlet of that web application to
handle the request.

Both steps require the servlet container to break up the request URI into three parts:
the context path, the servlet path, and the path info. Figure 5.2 shows these three com-
ponents of a URL.

Let’s take a look at each component:

• Context path—The servlet container tries to match the longest possible part of
the request URI, starting from the beginning, with the available web applica-
tion names. This part is called the context path. For example, if the request URI
is /autobank/accountServlet/personal, then /autobank is the
context path (assuming that a web application named autobank exists within

Figure 5.2 The context path, servlet path, and path info
76 CHAPTER 5 STRUCTURE AND DEPLOYMENT

the servlet container). If there is no match, the context path is empty; in this
case, it associates the request with the default web application.

Licensed to Tricia Fu <tricia.fu@gmail.com>

• Servlet path—After taking out the context path, the servlet container tries to
match the longest possible part of the remaining URI with the servlet mappings
defined for the web application that was specified as the context path. This part
is called the servlet path. For example, if the request URI is /autobank/
accountServlet/personal, then /accountServlet is the servlet
path (assuming that a servlet named accountServlet is defined in the
autobank web application). If it is unable to find any match, it returns an
error page. We will see how the servlet container determines this path shortly.

• Path info—Anything that remains after determining the servlet path is called
path info. For example, if the request URI is /autobank/accountServlet/
personal, /personal is the path info.

NOTE Remember the following three points:

• Request URI = context path + servlet path + path info.
• Context paths and servlet paths start with a / but do not end with it.
• HttpServletRequest provides three methods—getContext-

Path(), getServletPath() and getPathInfo()—to retrieve the
context path, the servlet path, and the path info, respectively, associated
with a request.

Identifying the servlet path

To match a request URI with a servlet, the servlet container follows a simple algorithm.
Once it identifies the context path, if any, it evaluates the remaining part of the request
URI with the servlet mappings specified in the deployment descriptor, in the following
order. If it finds a match at any step, it does not take the next step.

1 The container tries to match the request URI to a servlet mapping. If it finds a
match, the complete request URI (except the context path) is the servlet path. In
this case, the path info is null.

2 It tries to recursively match the longest path by stepping down the request
URI path tree a directory at a time, using the / character as a path separator,
and determining if there is a match with a servlet. If there is a match, the
matching part of the request URI is the servlet path and the remaining part is
the path info.

3 If the last node of the request URI contains an extension (.jsp, for example),
the servlet container tries to match it to a servlet that handles requests for the
specified extension. In this case, the complete request URI, minus the context
path, is the servlet path, and the path info is null.

4 If the container is still unable to find a match, it will forward the request to the
default servlet. If there is no default servlet, it will send an error message indicat-
THE DEPLOYMENT DESCRIPTOR: AN OVERVIEW 77

ing the servlet was not found.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Understanding this process is very important for the exam, because you will be asked
to map a given request URI to a servlet. Although the process looks complicated, it is
actually not. The following detailed example will help you to understand this process.
We will assume that the following servlet mappings are defined for the colorapp
web application in web.xml:

 <servlet-mapping>
 <servlet-name>RedServlet</servlet-name>
 <url-pattern>/red/*</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>RedServlet</servlet-name>
 <url-pattern>/red/red/*</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>RedBlueServlet</servlet-name>
 <url-pattern>/red/blue/*</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>BlueServlet</servlet-name>
 <url-pattern>/blue/</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>GreenServlet</servlet-name>
 <url-pattern>/green</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>ColorServlet</servlet-name>
 <url-pattern>*.col</url-pattern>
 </servlet-mapping>

Table 5.2 shows the separation of request URIs into servlet path and path info. For sim-
plicity, we have kept the context path as colorapp for all the examples. The table
also shows the servlets used for handling the requests.

Table 5.2 Mapping a request URI to a servlet

Request URI Servlet used Servlet path Path info Comments

/colorapp/red RedServlet /red null See Step 1.

/colorapp/red/ RedServlet /red / See Step 2.

/colorapp/red/
aaa

RedServlet /red /aaa See Step 2.

/colorapp/red/
blue/aa

RedBlueServlet /red/blue /aa See Step 2.
78 CHAPTER 5 STRUCTURE AND DEPLOYMENT

continued on next page

Licensed to Tricia Fu <tricia.fu@gmail.com>

Quizlet
Q: In the above example, which servlet will handle the request with a

request URI of /colorapp/blue/cool.col?
A: The only URI pattern that applies to BlueServlet is /blue/. In this

case, our URI is /blue/cool.col, which does not match /blue/.
However, it matches *.col, which maps to the ColorServlet.
Therefore, ColorServlet will handle this request.

/colorapp/red/
red/aaa

RedServlet /red/red /aaa Longest matching URL
mapping is chosen. So,
servletpath is /red/
red instead of /red. See
Step 2.

/colorapp/aa.col ColorServlet /aa.col null *.col is mapped to
ColorServlet. See
Step 3.

/colorapp/hello/
aa.col

ColorServlet /hello/
aa.col

null /hello/aa.col
matches with *.col, so
the servlet path is
/hello/aa.col and the
path info is null. See
Step 3.

/colorapp/red/
aa.col

RedServlet /red /aa.col RedServlet is chosen
because there is a path
(/red) matching with a
url-mapping (/red/*).
Extension mapping
(*.col) is considered
only if there is no match
for path. See Step 2.

/colorapp/blue NONE
(Error message)

The url-pattern for
BlueServlet is /blue/.
Note the trailing /.

/colorapp/hello/
blue/

NONE
(Error message)

/hello/blue does not
start with /blue.

/colorapp/blue/
mydir

NONE
(Error message)

There is no * in the map-
ping for BlueServlet.

/colorapp/blue/
dir/ aa.col

ColorServlet /blue/dir/
aa.col

null There is no mapping for
blue/*, so extension map
ping *.col is considered.
See Step 3.

/colorapp/green GreenServlet /green null See Step 1.

Table 5.2 Mapping a request URI to a servlet (continued)

Request URI Servlet used Servlet path Path info Comments
THE DEPLOYMENT DESCRIPTOR: AN OVERVIEW 79

Licensed to Tricia Fu <tricia.fu@gmail.com>

5.3 SUMMARY

We began the chapter with a look at the directory structure of a web application. The
Java Servlet Specification mandates the way we package all the components, files, and
other resources to ensure portability and ease of deployment. Every web application
must have a deployment descriptor, named web.xml, which contains the informa-
tion about the web application that the servlet container needs, such as servlet decla-
rations and mappings, properties, authorization and security constraints, and so forth.
We discussed the contents of the deployment descriptor and the manner in which it
defines servlets and their initialization parameters. Finally, we looked at the way the
servlet container uses the servlet mappings of the deployment descriptor to map a
request URI to a servlet.

At this point, you should be able to answer the questions about the structure of a
web application and the elements of the deployment descriptor and their uses. You
should also be able to determine the servlet used for processing a request by looking
at the servlet-mapping elements and the request URI.

In the next chapter, we will discuss how the components of a web application inter-
act by describing the web container model.

5.4 REVIEW QUESTIONS

1. Which element is used to specify useful information about an initialization
parameter of a servlet in the deployment descriptor? (Select one)

a param-description

b description

c info

d param-info

e init-param-info

2. Which of the following deployment descriptor snippets correctly associates a
servlet implemented by a class named com.abc.SalesServlet with the
name SalesServlet? (Select one)

a <servlet>

 <servlet-name>com.abc.SalesServlet</servlet-name>
 <servlet-class>SalesServlet</servlet-class>
 </servlet>

b <servlet>

 <servlet-name>SalesServlet</servlet-name>
 <servlet-package>com.abc.SalesServlet</servlet-package>
 </servlet>

c <servlet>

 <servlet-name>SalesServlet</servlet-name>
80 CHAPTER 5 STRUCTURE AND DEPLOYMENT

 <servlet-class>com.abc.SalesServlet</servlet-class>
 </servlet>

Licensed to Tricia Fu <tricia.fu@gmail.com>

d <servlet name="SalesServlet" class="com.abc.SalesServlet">

 <servlet>
 <servlet-class name="SalesServlet">
 com.abc.SalesServlet
 </servlet-class>
 </servlet>
 <servlet>
 <servlet-name class="com.abc.SalesServlet">
 SalesServlet
 </servlet-name>
 </servlet>

3. A web application is located in a directory named sales. Where should its
deployment descriptor be located? (Select one)

a sales

a sales/deployment

a sales/WEB

a sales/WEB-INF

a WEB-INF/sales

a WEB-INF

b WEB/sales

4. What file is the deployment descriptor of a web application named BankApp
stored in? (Select one)

a BankApp.xml

b bankapp.xml

c server.xml

d deployment.xml

e WebApp.xml

f web.xml

5. Your servlet class depends on a utility class named com.abc.TaxUtil. Where
would you keep the TaxUtil.class file? (Select one)

a WEB-INF

b WEB-INF/classes

c WEB-INF/lib

d WEB-INF/jars

e WEB-INF/classes/com/abc

6. Your web application, named simpletax, depends on a third-party JAR file
named taxpackage.jar. Where would you keep this file? (Select one)

a simpletax
REVIEW QUESTIONS 81

b simpletax/WEB-INF

c simpletax/WEB-INF/classes

Licensed to Tricia Fu <tricia.fu@gmail.com>

d simpletax/WEB-INF/lib

e simpletax/WEB-INF/jars

f simpletax/WEB-INF/thirdparty

7. Which of the following deployment descriptor elements is used to specify the
initialization parameters for a servlet named TestServlet? (Select one)

a No element is needed because initialization parameters are specified as
attributes of the <servlet> element.

b <servlet-param>

c <param>

d <initialization-param>

e <init-parameter>

f <init-param>

8. Assume that the following servlet mapping is defined in the deployment descrip-
tor of a web application:

 <servlet-mapping>
 <servlet-name>TestServlet</servlet-name>
 <url-pattern>*.asp</url-pattern>
 </servlet-mapping>

Which of the following requests will not be serviced by TestServlet?
(Select one)

a /hello.asp

b /gui/hello.asp

c /gui/hello.asp/bye.asp

d /gui/*.asp

e /gui/sales/hello.asp

f /gui/asp
82 CHAPTER 5 STRUCTURE AND DEPLOYMENT

Licensed to Tricia Fu <tricia.fu@gmail.com>

C H A P T E R 6

The servlet

container model
6.1 Initializing ServletContext 84
6.2 Adding and listening to scope

attributes 85
6.3 Servlet life-cycle events and

listeners 88

6.4 Adding listeners in the deployment
descriptor 90

6.5 Web applications in a distributed
environment 92

6.6 Summary 94

6.7 Review questions 94

EXAM OBJECTIVES

 3.1 For the ServletContext initialization parameters:

• Write servlet code to access initialization parameters; and
• Create the deployment descriptor elements for initialization parameters

(Sections 6.1 and 6.4)

 3.2 For the fundamental servlet attribute scopes (request, session, and context):

• Write servlet code to add, retrieve, and remove attributes;
• Given a usage scenario, identify the proper scope for an attribute; and
• Identify multi-threading issues associated with each scope.

(Sections 6.2 and 6.5)

 3.4 Describe the Web container life cycle event model for requests, sessions, and
web applications;

• Create and configure listener classes for each scope life cycle;
83

• Create and configure scope attribute listener classes; and

Licensed to Tricia Fu <tricia.fu@gmail.com>

• Given a scenario, identify the proper attribute listener to use.
(Section 6.3)

INTRODUCTION

Within a web application, all of the servlets share the same environment. The servlet
container exposes the environment to the servlets through the javax.serv-
let.ServletContext interface. The Servlet API also defines interfaces that allow
the servlets and the servlet container to interact with each other. In this chapter, we
will learn about these interfaces, and we will see how to configure the environment
using the deployment descriptor. We will also examine the behavior of the servlets and
the servlet container in a distributed environment.

6.1 INITIALIZING SERVLETCONTEXT
Every web application has exactly one instance of javax.servlet.Servlet-
Context (assuming that the servlet container is not distributed across multiple
JVMs). The context is initialized at the time that the web application is loaded. Just as
we have initialization parameters for a servlet, we have initialization parameters for a
servlet context. These parameters are defined in the deployment descriptor of the web
application, contained within a <context-param> element. Here is an example:
<web-app>

 ...

 <context-param>

 <param-name>dburl</param-name>

 <param-value>jdbc:databaseurl</param-value>

 </context-param>

 ...

<web-app>

The servlets of a web application can retrieve initialization parameters like these using
the methods of the ServletContext interface, shown in table 6.1.

The servlet context initialization parameters are used to specify application-wide infor-
mation, such as the developer’s contact information and the database connection
information. Of course, before we can use these methods we must get a reference to
ServletContext. The following code snippet from the init() method of a serv-

Table 6.1 ServletContext methods for retrieving the initialization parameters

Method Description

String getInitParameter(String name) Returns a String containing the value of the
parameter, or null if the parameter does not exist

java.util.Enumeration
getInitParameterNames()

Returns an Enumeration of the names of the
context’s initialization parameters
84 CHAPTER 6 THE SERVLET CONTAINER MODEL

let demonstrates this:

Licensed to Tricia Fu <tricia.fu@gmail.com>

 public void init()
 {
 ServletContext context =
 getServletConfig().getServletContext();

 //ServletContext context =
 getServletContext();

 String dburl = context.getInitParameter("dburl");

 //use the dburl to create database connections
 }

The ServletContext object is contained in the ServletConfig object. The
previous code uses the getServletContext() method of ServletConfig to
get the ServletContext. You can also use the getServletContext() method
of the GenericServlet class. GenericServlet provides this method since it
implements the ServletConfig interface.

NOTE There is a difference between servlet context initialization parameters and
servlet initialization parameters. Servlet context parameters belong to the
web application and are accessible to all servlets and JSP pages of that web
application. On the other hand, servlet initialization parameters belong to
the servlet for which they are defined, and cannot be accessed by any other
component of the web application.

6.2 ADDING AND LISTENING
TO SCOPE ATTRIBUTES

You can provide a servlet context with initial parameters inside a deployment descrip-
tor, but you can’t add them programmatically. If you want to add objects to a scope
(request, session, or application) inside regular code, you need attributes. These objects
provide information during the servlet’s execution and can be used to communicate
between scopes and servlets.

You may need to pay attention to which attributes have been added or removed to
a given scope. For this purpose, the servlet specification provides listener interfaces.
These receive notification when events related to a web application occur. To respond
to this notification, you must create a class that implements the corresponding listener
interface and specify the class name in the deployment descriptor. Then, the servlet con-
tainer will call the appropriate methods on objects of this class when the events occur.

In this section, we’ll cover the process of adding and removing attributes and show
how to listen to these operations from inside your code.

6.2.1 Adding and removing scope attributes

You can add attribute information to context objects, session objects, and request
objects. Fortunately, each of these classes contains the same four methods for perform-
ing attribute operations. These are listed in table 6.2.

Uses ServletConfig to
get ServletContext

Uses GenericServlet.get-
ServletContext
ADDING AND LISTENING TO SCOPE ATTRIBUTES 85

Licensed to Tricia Fu <tricia.fu@gmail.com>

The first two methods return objects added to the specified scope. You need to keep
three important points in mind:

• HttpServletRequest attributes reset after each request, but session
attributes are available to any servlet in the application that receives a request as
part of the session.

• Any attribute associated with the context is available to all servlets in the application.
• You can only associate one attribute with a given name.

Before setting an attribute for a scope, you need to acquire its corresponding scope
object. For example, if you want to add a username to a session, you could use

HttpSession session = req.getSession(true);
session.setAttribute("username", "Joe Programmer");

This process is straightforward and works similarly for requests and servlet contexts.

6.2.2 Listening to attribute events

Now that you understand how to add and remove attributes from scope objects, we
need to show you how to receive these attribute events. Each scope (context, session,
and request) provides different listeners and events for keeping track of attributes. In
this section, we’ll look at each of them.

Listening to request attribute events

If you need to keep track of events involving the addition or removal of request
attributes, you should create a class that implements the ServletRequest-
AttributeListener interface. This class will respond to attribute events as long
as the request hasn’t left the application’s scope. Table 6.3 lists the methods available
for handling these events.

These methods are simple to understand. When you add an attribute to a request,
the attributeAdded() method will execute with information taken from the
ServletRequestAttributeEvent. The attributeRemoved() method will
activate when an attribute is removed from the request, and attribute-
Replaced() will function when an attribute’s value is changed.

Table 6.2 Methods for getting and setting scope attributes

Method Description

Object getAttribute(String name) Returns the attribute object associated with the
given name

Enumeration getAttributeNames() Returns an Enumeration of the names of the
scope’s attributes

void setAttribute(String name,
Object object)

Associates the object with the scope and identi-
fies it with a String name

void removeAttribute(String name) Removes the attribute from the scope
86 CHAPTER 6 THE SERVLET CONTAINER MODEL

Licensed to Tricia Fu <tricia.fu@gmail.com>

Listening to session attribute events

Three listener interfaces are available for keeping track of sessions and their attributes:
HttpSessionAttributeListener, HttpSessionBindingListener, and
HttpSessionActivationListener. We’ll cover each of them in chapter 8,
when we discuss the overall framework of session operation.

Listening to context attribute events

The ServletContextAttributeListener interface is used to receive notifica-
tions about the changes to the attribute list of a servlet context. It has three methods,
as shown in table 6.4.

To use this capability, write a class that implements the interface and specify the name
of the class in the deployment descriptor. The servlet container will call its methods
automatically when relevant events occur.

In addition to these attribute listeners, the servlet specification provides interfaces
for keeping track of the servlet’s life cycle. These are important to understand, and
we’ll cover them in the next section.

Table 6.3 ServletRequestAttributeListener methods

Method Description

void attributeAdded(ServletRequestAttributeEvent
sre)

Called when an attribute is
added to a request

void attributeRemoved(
ServletRequestAttributeEvent sre)

Called when an attribute is
removed from a request

void attributeReplaced(
ServletRequestAttributeEvent sre)

Called when an attribute is
replaced in a request

Table 6.4 ServletContextAttributeListener methods

Method Description

void attributeAdded
(ServletContextAttributeEvent scae)

Called when a new attribute is added to the serv-
let context

void attributeRemoved
(ServletContextAttributeEvent scae)

Called when an existing attribute is removed
from the servlet context

void attributeReplaced
(ServletContextAttributeEvent scae)

Called when an attribute of the servlet context is
replaced
ADDING AND LISTENING TO SCOPE ATTRIBUTES 87

Licensed to Tricia Fu <tricia.fu@gmail.com>

6.3 SERVLET LIFE-CYCLE EVENTS AND LISTENERS

We saw in the previous section that the servlet container creates events whenever an
attribute is added to or removed from a scope object. Similarly, it creates events when-
ever these objects are created and destroyed.

Many times, it is useful to pay attention to these events. For example, we can log
an entry in the log file when the context is created, or we can page the support people
when the context is destroyed. The Servlet Specification 2.4 defines the three listener
interfaces that make this possible.

6.3.1 javax.servlet.ServletContextListener

This interface allows a developer to know when a servlet context is initialized or
destroyed. For example, we might want to create a database connection as soon as the
context is initialized and close it when the context is destroyed.

Table 6.5 shows the two methods of the ServletContextListener interface.

Implementing the interface is rather trivial. Listing 6.1 shows how we can write a class
that implements the interface in order to use these notifications to open and close a
database connection.

package com.abcinc;

import javax.servlet.*;
import java.sql.*;

public class MyServletContextListener implements
 ServletContextListener
{
 public void contextInitialized(ServletContextEvent sce)
 {
 try
 {
 Connection c = //create connection to database;
 sce.getServletContext().setAttribute("connection", c);
 }catch(Exception e) { }
 }

Table 6.5 ServletContextListener methods

Method Description

void contextDestroyed
(ServletContextEvent sce)

Called when the context is destroyed

void contextInitialized
(ServletContextEvent sce)

Called when the context is initialized

Listing 6.1 Implementing ServletContextListener to create a database connection
88 CHAPTER 6 THE SERVLET CONTAINER MODEL

 public void contextDestroyed(ServletContextEvent sce)
 {

Licensed to Tricia Fu <tricia.fu@gmail.com>

 try
 {
 Connection c = (Connection)
 sce.getServletContext().getAttribute("connection");
 c.close();
 }catch(Exception e) { }
 }

}

In listing 6.1, we create a database connection in the contextInitialized()
method and store it in ServletContext. Since ServletContext is accessible
to all of the servlets of the web application, the database connection is also available
to them. The contextDestroyed() method will be called when the servlet con-
tainer takes the web application out of service and is thus an ideal place to close the
database connection.

Notice the use of the ServletContextEvent object that is passed in the
contextInitialized() and contextDestroyed() methods. We use this
object to retrieve a reference to the ServletContext object of the web application.
ServletContextEvent extends java.util.EventObject.

6.3.2 javax.servlet.Http.HttpSessionListener

HttpSessionListener contains the same methods and capabilities as Servlet-
ContextListener, but provides notification whenever a session is created or
destroyed. Like the listeners used for session attributes, we’ll cover this important
interface in chapter 8, when we go over the process of session operation.

6.3.3 javax.servlet.Http.HttpServletRequestListener

The last listener interface we’ll present keeps track of the life cycle of an HttpServlet-
Request. It receives notification whenever a request comes into scope. Table 6.6 lists
its methods.

It’s important to inform the web container about your listener classes. This involves
setting parameters within the deployment descriptor. We’ll investigate this next.

Table 6.6 ServletRequestListener methods

Method Description

void requestDestroyed
(ServletRequestEvent sce)

Called when the request is destroyed

void requestInitialized
(ServletRequestEvent sce)

Called when the request is initialized
SERVLET LIFE-CYCLE EVENTS AND LISTENERS 89

Licensed to Tricia Fu <tricia.fu@gmail.com>

Quizlet
Q: Which application event listeners are notified when a web application

starts up?
A: When the application starts up, the servlet context of the application is

created. Therefore, only ServletContextListeners are notified.

6.4 ADDING LISTENERS IN
THE DEPLOYMENT DESCRIPTOR

We can configure the properties of a web application context by using the deployment
descriptor. The following is the definition of the <web-app> element. You don’t have
to memorize this definition, but it’s helpful to see all the elements in one place.

<!ELEMENT web-app (icon?, display-name?, description?, distributable?,
context-param*, filter*, filter-mapping*, listener*, servlet*,
servlet-mapping*, session-config?, mime-mapping*, welcome-file-list?,
error-page*, taglib*, resource-env-ref*, resource-ref*,
security-constraint*,login-config?, security-role*, env-entry*, ejb-ref*,
ejb-local-ref*)>

The properties of the web application are accessible through ServletContext.
Since the properties apply to all of the components of a web application, it is logical
that the elements used to configure the properties come directly under the <web-
app> element. Let’s look at these elements briefly:

• display-name—Defines a short name that can be used by development tools,
such as IDEs.

• description—Defines the usage and any important information that the devel-
oper might want to convey to the deployer.

• distributable—Indicates that the application can be distributed across multiple JVMs.

• context-param—Specifies initialization parameters for the web application. It con-
tains a <param-name>, a <param-value>, and an optional <descrip-
tion> element. In section 6.1, we saw how the ServletContext
initialization parameters can be used to create a database connection. The fol-
lowing lines specify a dburl parameter used by a servlet:

 <context-param>
 <param-name>dburl</param-name>
 <param-value>jdbc:odbc:MySQLODBC</param-value>
 </context-param>

We can have as many <context-param> elements as we need.

• listener—Specifies the classes that listen for the application events that we dis-
cussed in section 6.2. It contains one and only one listener-class ele-
90 CHAPTER 6 THE SERVLET CONTAINER MODEL

ment that specifies the fully qualified class name of the class that implements

Licensed to Tricia Fu <tricia.fu@gmail.com>

the listener interface. The following lines show how we can configure two
classes that implement the ServletContextListener and Servlet-
ContextAttributeListener interfaces:

 <listener>
 <listener-class>
 com.abcinc.MyServletContextListener
 </listener-class>

 </listener>

 <listener>
 <listener-class>
 com.abcinc.MyServletContextAttributeListener
 </listener-class>
 </listener>

Observe that we did not specify which class should be used for which event; that
is because the servlet container will figure that out on its own. It instantiates the
specified class and checks all the interfaces that the class implements. For each rel-
evant interface, it adds the instance to its list of respective listeners. The container
delivers the events to the listeners in the order the classes are specified in the
deployment descriptor. These classes must be present in the WEB-INF\
classes directory or packaged in a JAR file with other servlet classes.

NOTE You can also implement multiple listener interfaces in the same class and
configure just this class to receive the various notifications through the
methods of the respective interfaces. In this case, you will need only one
<listener> element in the deployment descriptor. The servlet container
will create only one instance of this class and will send all the notifications
to this instance.

Quizlet
Q: You have written a class named MyServletRequestListener to

listen for ServletRequestEvents. How will you configure this class
in the deployment descriptor?

A: By adding a <listener> element in the deployment descriptor as
shown here:

 <web-app>
 ...
 <listener>
 <listener-class>MySessionAttributeListener</listener-class>
 </listener>
 ...
 </web-app>
ADDING LISTENERS IN THE DEPLOYMENT DESCRIPTOR 91

Licensed to Tricia Fu <tricia.fu@gmail.com>

6.5 WEB APPLICATIONS IN A
DISTRIBUTED ENVIRONMENT

An industrial-strength web application is expected to service thousands of simulta-
neous users with high reliability. It is common to distribute the applications across
multiple server machines that are configured to work as a cluster. Server applications,
such as the web server and the servlet container, are spread over these machines and
thus work in a distributed mode. For example, one logical servlet container may actu-
ally run on multiple JVMs on multiple machines. Distributing an application has the
following advantages:

• Fail-over support—If a server machine breaks down, another server machine can
take over transparently to the users.

• Load balancing—Requests are assigned to the least busy server of the cluster to
be serviced.

Distributing an application is not an easy task, though. Configuring the machines and
the servers to work in a cluster is quite complicated. Moreover, the servlets need to be
designed to run within the constraints imposed by a distributed environment. More
often than not, it is easier to upgrade the machine than to distribute the application
across multiple machines. However, certain requirements, like fail-over support, can
only be met by clustering.

Many assumptions that we make while developing web applications for a single
JVM no longer hold in a distributed environment. For example, we cannot assume that
there is only one instance of a servlet; there may be multiple instances of a servlet run-
ning under different JVMs, and so we cannot use static or instance members to share
data. We cannot directly use the local file system—the absolute path of the files may
be different on different machines. We also have to keep the application state in a data-
base instead of the ServletContext, because there will be different Servlet-
Contexts on different machines.

The Java Servlet Specification helps us by guaranteeing the behavior of some of the
important aspects and features of a servlet container in a distributed environment.

6.5.1 Behavior of a ServletContext

Each web application has one and only one ServletContext instance on each
JVM. The ServletContext for the default web application, however, exists on only
one JVM—that is, it is not distributed.

On the exam, you will find questions based on the following points regarding the
behavior of a ServletContext in a distributed environment:

• ServletContext attributes set on one JVM are not visible on another JVM.
We must use a database or the session to share the information.

• A servlet container is not required to propagate ServletContextEvents and
92 CHAPTER 6 THE SERVLET CONTAINER MODEL

ServletContextAttributeEvents to different JVMs. This means that

Licensed to Tricia Fu <tricia.fu@gmail.com>

changes to the ServletContext in one JVM may not trigger a method call
on a ServletContextListener or a ServletContextAttribute-
Listener in another JVM.

• ServletContext initialization parameters are available in all of the JVMs.
Recall that ServletContext initialization parameters are specified in the
deployment descriptor.

Quizlet
Q: Your web application uses a ServletContextListener to page

support personnel whenever it goes down. What would be the impact
on this functionality if the web application were deployed in a distrib-
uted environment?

A: There will be no impact on this functionality. Because an instance of
ServletContext will be created on all the servers, the support per-
sonnel will be paged whenever any instance is destroyed.

Q: You maintain a list of users who are logged into the system in
ServletContext. You print the list of these users upon request. How
would this functionality be affected if your web application were
deployed in a distributed environment?

A: This functionality will not work properly in a distributed environment.
Remember that each server machine will have a separate instance of
ServletContext. Therefore, a ServletContext will only know
of the users who logged in through the server machine on which it
resides. Obviously, a request to print the list of users will show only a
partial list of the users.

6.5.2 Behavior of an HttpSession

In a distributed environment, the semantics of an HttpSession are a little different
than those of a ServletContext. The specification mandates that requests belong-
ing to a session must be serviced by only one JVM at a time. However, the container
may migrate the session to another JVM for load balancing or fail-over.

You should remember the following points regarding the behavior of an Http-
Session in a distributed environment:

• An HttpSession can reside on only one JVM at a time.
• A servlet container is not required to propagate HttpSessionEvents to dif-

ferent JVMs.
• Attributes of a session that implement the java.io.Serializable inter-

face are migrated appropriately when the session migrates. This does not mean
that if the attributes implement the readObject() and writeObject()
methods, they will definitely be called.
WEB APPLICATIONS IN A DISTRIBUTED ENVIRONMENT 93

Licensed to Tricia Fu <tricia.fu@gmail.com>

• A container notifies all of the session attributes that implement the Http-
SessionActivationListener interface when it migrates the session.

• A container may throw an IllegalArgumentException in the setAt-
tribute() method of HttpSession if the attribute is not Serializable.

6.6 SUMMARY

The servlets of a web application share the application’s environment through the
methods of the ServletContext object. When a web application is loaded,
ServletContext is initialized using the parameters that have been defined in the
deployment descriptor. In this chapter, we learned how to use the initialization param-
eters of ServletContext.

Listener interfaces are implemented in order to receive notifications of certain
events in a web application. We discussed the uses of the ServletContextLis-
tener, the ServletContextAttributeListener, the ServletRequest-
AttributeLister, and their configuration in the deployment descriptor.

A web application can be distributed across multiple servers to improve perfor-
mance and reliability. We discussed the ways that ServletContext and Http-
Session function in a distributed environment.

You should now be able to answer the questions about servlet context initialization
parameters, the application event listener classes, and the behavior of Servlet-
Context and HttpSession in a distributed environment.

In the next chapter, we’ll explore the topic of filters.

6.7 REVIEW QUESTIONS

1. Which of the following methods will be invoked when a ServletContext is
destroyed? (Select one)

a contextDestroyed() of javax.servlet.ServletContextListener
b contextDestroyed() of javax.servlet.HttpServletContextListener
c contextDestroyed() of javax.servlet.http.ServletContextListener
d contextDestroyed() of javax.servlet.http.HttpServletContextListener

2. Which of the following methods will be invoked when a ServletContext is
created? (Select one)

a contextInstantiated() of javax.servlet.ServletContextListener
b contextInitialized() of javax.servlet.ServletContextListener
c contextInited() of javax.servlet.ServletContextListener
d contextCreated() of javax.servlet.ServletContextListener

3. Consider the following class:

 import javax.servlet.*;
94 CHAPTER 6 THE SERVLET CONTAINER MODEL

 public class MyListener implements ServletContextAttributeListener
 {

Licensed to Tricia Fu <tricia.fu@gmail.com>

 public void attributeAdded(ServletContextAttributeEvent scab)
 {
 System.out.println("attribute added");
 }
 public void attributeRemoved(ServletContextAttributeEvent scab)
 {
 System.out.println("attribute removed");
 }

 }

Which of the following statements about the above class is correct? (Select one)

a This class will compile as is.
b This class will compile only if the attributeReplaced() method is added to it.
c This class will compile only if the attributeUpdated() method is added to it.
d This class will compile only if the attributeChanged() method is added to it.

4. Which method is used to retrieve an attribute from a ServletContext?
(Select one)

a String getAttribute(int index)

b String getObject(int index)

c Object getAttribute(int index)

d Object getObject(int index)

e Object getAttribute(String name)

f String getAttribute(String name)

g String getObject(String name)

5. Which method is used to retrieve an initialization parameter from a Servlet-
Context? (Select one)

a Object getInitParameter(int index)

b Object getParameter(int index)

c Object getInitParameter(String name)

d String getInitParameter(String name)

e String getParameter(String name)

6. Which deployment descriptor element is used to specify a ServletContext-
Listener? (Select one)

a <context-listener>

b <listener>

c <servlet-context-listener>

d <servletcontextlistener>
REVIEW QUESTIONS 95

e <servletcontext-listener>

Licensed to Tricia Fu <tricia.fu@gmail.com>

7. Which of the following web.xml snippets correctly specify an initialization
parameter for a servlet context? (Select one)

a <context-param>

 <name>country</name>
 <value>USA</value>
 <context-param>

b <context-param>

 <param name="country" value="USA" />
 <context-param>

c <context>

 <param name="country" value="USA" />
 <context>

d <context-param>

 <param-name>country</param-name>
 <param-value>USA</param-value>
 <context-param>

8. Which of the following is not a requirement of a distributable web application?
(Select one)

a It cannot depend on the notification events generated due to changes in the
ServletContext attribute list.

b It cannot depend on the notification events generated due to changes in the
session attribute list.

c It cannot depend on the notification events generated when a session is acti-
vated or passivated.

d It cannot depend on the notification events generated when ServletContext
is created or destroyed.

e It cannot depend on the notification events generated when a session is cre-
ated or destroyed.

9. Which of the following is a requirement of a distributable web application?
(Select one)

a It cannot depend on ServletContext for sharing information.
b It cannot depend on the sendRedirect() method.
c It cannot depend on the include() and forward() methods of the Request-

Dispatcher class.
d It cannot depend on cookies for session management.
96 CHAPTER 6 THE SERVLET CONTAINER MODEL

Licensed to Tricia Fu <tricia.fu@gmail.com>

C H A P T E R 7

Using filters
7.1 What is a filter? 98
7.2 The Filter API 102

7.4 Advanced features 110
7.5 Summary 117
7.3 Configuring a filter 106 7.6 Review questions 117
EXAM OBJECTIVES

 3.3 Describe the web container request processing model;

• Write and configure a filter;
• Create a request or response wrapper; and
• Given a design problem, describe how to apply a filter or a wrapper

(Sections 7.1 through 7.3)

INTRODUCTION

Filters are a recent addition to servlet development. This subject has gained impor-
tance, and is one of the new aspects of the SCWCD exam.
97

Licensed to Tricia Fu <tricia.fu@gmail.com>

7.1 WHAT IS A FILTER?

In technical terms, a filter is an object that intercepts a message between a data source
and a data destination, and then filters the data being passed between them. It acts as
a guard, preventing undesired information from being transmitted from one point to
another. For example, a Digital Subscriber Line (DSL) filter sits between the DSL line
and the telephone equipment, and allows normal telephone frequencies to pass
through the phone line to the telephone but blocks the frequencies meant for DSL
modems. A filter in your e-mail system allows genuine e-mail messages to reach your
inbox while blocking spam. These filters screen out undesired parts of the original
messages. Another example of a filter is in data transmissions over TCP/IP; as it
receives the data packets, the lower layer (IP) removes the information that was
intended just for that layer from the data packets before sending the packets to the
upper layer (TCP).

For a web application, a filter is a web component that resides on the web server
and filters the requests and responses that are passed between a client and a resource.

Figure 7.1 illustrates the general idea of a filter in a web application. It shows the
request passing through a filter on its way to a servlet. The servlet generates the
response as usual; the response also passes through the filter on its way to the client.
The filter can thus monitor the request and the response before they reach their des-
tination. As shown in figure 7.1, the existence of a filter is transparent to the client as
well as to the servlet.

We can also employ a chain of filters, if necessary, in which each filter processes
the request and passes it on to the next filter in the chain (or to the actual resource if
it is the last filter in the chain). Similarly, each filter processes the response in the
reverse order before the response reaches the client. This process is illustrated in
figure 7.2. Observe that a request will be processed by the filters in this order: Filter1,
Filter2, and Filter3. However, the response will be processed by the filters in this order:
Filter3, Filter2, and Filter1.

Figure 7.1 A single filter
98 CHAPTER 7 USING FILTERS

Licensed to Tricia Fu <tricia.fu@gmail.com>

This is a very simple explanation of filters. As we will learn in the following sections,
filters can do much more than just monitor the communication between the client and
the server. In general, filters allow us to

• Analyze a request and decide whether to pass on the request to the resource or
create a response on its own.

• Manipulate a request, including a request header, by wrapping it into a custom-
ized request object before it is delivered to a resource.

• Manipulate a response by wrapping it into a customized response object before
it is delivered to the client.

7.1.1 How filtering works

When a servlet container receives a request for a resource, it checks whether a filter is
associated with this resource. If a filter is associated with the resource, the servlet con-
tainer routes the request to the filter instead of routing it to the resource. The filter,
after processing the request, does one of three things:

• It generates the response itself and returns it to the client.

• It passes on the request (modified or unmodified) to the next filter in the chain
(if any) or to the designated resource if this is the last filter.

• It routes the request to a different resource.

As it returns to the client, the response passes back through the same set of filters in
the reverse order. Each filter in the chain may modify the response.

7.1.2 Uses of filters

Some of the common applications of filters identified by the Servlet specification are

• Authentication filters

• Logging and auditing filters

Figure 7.2 Using multiple filters
WHAT IS A FILTER? 99

• Image conversion filters

Licensed to Tricia Fu <tricia.fu@gmail.com>

• Data compression filters

• Encryption filters

• Tokenizing filters

• Filters that trigger resource access events

• Extensible Stylesheet Language Transformation (XSLT) filters

• MIME-type chain filters

7.1.3 The Hello World filter

To get a feel for filters, let’s write a simple Hello World filter. In this section, we will
look at the four steps—coding, compiling, deploying, and running—involved in
developing and using a filter. This filter will intercept all of the requests matching the
URI pattern /filter/* and will respond with the Hello Filter World message.

Code

All filters implement the javax.servlet.Filter interface. Listing 7.1 shows the
code for HelloWorldFilter.java. It declares one class, HelloWorldFilter,
that implements the Filter interface and defines three methods—init(),
doFilter(), and destroy()—that are declared in the Filter interface.

import java.io.*;
import javax.servlet.*;

public class HelloWorldFilter implements Filter
{
 private FilterConfig filterConfig;
 public void init(FilterConfig filterConfig)
 {
 this.filterConfig = filterConfig;
 }

 public void doFilter(
 ServletRequest request,
 ServletResponse response,
 FilterChain filterChain
) throws ServletException, IOException
 {
 PrintWriter pw = response.getWriter();
 pw.println("<html>");
 pw.println("<head>");
 pw.println("</head>");
 pw.println("<body>");

Listing 7.1 HelloWorldFilter.java
100 CHAPTER 7 USING FILTERS

 pw.println("<h3>Hello Filter World!</h3>");
 pw.println("</body>");

Licensed to Tricia Fu <tricia.fu@gmail.com>

 pw.println("</html>");
 }

 public void destroy()
 {
 }

}

The code that implements the filter in listing 7.1 is similar to the code that implements
a servlet. First, we import the required packages, javax.servlet and java.io.
The ServletRequest, ServletResponse, ServletException, Filter-
Config, Filter, and FilterChain classes and interfaces belong to the
javax.servlet package, while the PrintWriter and IOException classes
belong to the java.io package. Since we are not using HTTP-specific features in this
code, we don’t need to import the javax.servlet.http package.

Next, we declare the HelloWorldFilter class. It implements all of the meth-
ods declared in the Filter interface. We will learn more about these methods in
section 7.2.

Compilation

As usual, we include the servlet.jar (located under the directory c:\jakarta-
tomcat-5.0.25\common\lib\) in the classpath and compile the Hello-
WorldFilter.java file.

Deployment

Just like with a servlet, the deployment of a filter is a two-step process:

1 Copy the file HelloWorldFilter.class to the WEB-INF\classes
directory of the web application corresponding to this chapter:

 c:\jakarta-tomcat-5.0.25\webapps\chapter07\WEB-INF\classes

2 Specify the filter class and map the required request URLs to this filter in the
deployment descriptor:

 <web-app>

 <!-- specify the Filter name and the Filter class -->
 <filter>
 <filter-name>HelloWorldFilter</filter-name>
 <filter-class>HelloWorldFilter</filter-class>
 </filter>

 <!-- associate the Filter with a URL pattern -->
 <filter-mapping>
 <filter-name>HelloWorldFilter</filter-name>
 <url-pattern>/filter/*</url-pattern>
 </filter-mapping>
WHAT IS A FILTER? 101

 </web-app>

Licensed to Tricia Fu <tricia.fu@gmail.com>

We will see the details of these elements in section 7.4.
You could also copy the chapter07 directory directly from the Manning web site

to your c:\jakarta-tomcat-5.0.25\webapps directory. This directory con-
tains all the files needed to run the example.

Execution

Start Tomcat and enter this URL in your browser’s navigation bar:

 http://localhost:8080/chapter07/filter

The browser should display the message Hello Filter World!. Notice that we
have not put any resource on the server with the above URL. You can enter any URL
matching the pattern /filter/* and the filter will still execute without any prob-
lem. Thus, the resource to which a filter is mapped does not have to exist.

7.2 THE FILTER API

The Filter API is not in a separate package. The set of classes and interfaces used by
filters is part of the javax.servlet and javax.servlet.http packages.
Table 7.1 describes the three interfaces and four classes used by filters.

Table 7.1 Interfaces used by filters

Interface/Class Description

Interfaces of the package javax.servlet

javax.servlet.Filter We implement this interface to write filters.

javax.servlet.FilterChain The servlet container provides an object of this interface to
the filter developer at request time. This object gives the
developer a view into the invocation chain of a filtered
request for a resource.

javax.servlet.FilterConfig Similar to ServletConfig. The servlet container provides
a FilterConfig object that contains initialization parame-
ters for this filter.

Classes of the package javax.servlet

javax.servlet.
ServletRequestWrapper

Provides a convenient implementation of the
ServletRequest interface that can be subclassed
by developers wanting to adapt the request to a
servlet/JSP.

javax.servlet.
ServletResponseWrapper

Provides a convenient implementation of the
ServletResponse interface that can be subclassed
by developers wanting to adapt the response from a
servlet/JSP.
102 CHAPTER 7 USING FILTERS

continued on next page

Licensed to Tricia Fu <tricia.fu@gmail.com>

7.2.1 The Filter interface

This is the heart of the Filter API. Just as all servlets must implement the
javax.servlet.Servlet interface (either directly or indirectly), all filters must
implement the javax.servlet.Filter interface. It declares three methods, as
shown in table 7.2.

The three methods of the Filter interface are also the life-cycle methods of a filter.
Since, unlike the Servlet API, the Filter API does not provide any implementation for
the Filter interface, all filters must implement all three methods explicitly.

The init() method

The servlet container calls the init() method on a filter instance once and only once
during the lifetime of the filter. The container does not dispatch any request to a filter
before this method finishes. This method gives the filter object a chance to initialize
itself if required. Here is the signature of the init() method:

 public void init(FilterConfig filterConfig)
 throws ServletException;

This method is analogous to the init(ServletConfig) method of the Servlet
interface. This method is typically implemented to save the FilterConfig param-
eter for later use. We will learn more about FilterConfig in section 7.2.2. If the
initialization fails, the init() method may throw a ServletException or a sub-

Classes of the package javax.servlet.http

javax.servlet.http.
HttpServletRequestWrapper

Provides a convenient implementation of the
HttpServletRequest interface that can be sub
classed by developers wanting to adapt the request to
a servlet/JSP.

javax.servlet.http.
HttpServletResponseWrapper

Provides a convenient implementation of the
HttpServletResponse interface that can be subclassed
by developers wanting to adapt the response from a serv-
let/JSP.

Table 7.1 Interfaces used by filters (continued)

Interface/Class Description

Table 7.2 Methods of the javax.servlet.Filter interface

Method Description

void init(FilterConfig) Called by the container during application startup

void doFilter(ServletRequest,
ServletResponse, FilterChain)

Called by the container for each request whose URL is
mapped to this filter

void destroy() Called by the container during application shutdown
THE FILTER API 103

class of the ServletException to indicate the problem.

Licensed to Tricia Fu <tricia.fu@gmail.com>

The doFilter() method

The doFilter() method is analogous to the service() method of the Servlet
interface. The servlet container calls this method for each request with the URL that is
mapped to this filter. This is the signature of the doFilter() method:

 public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws java.io.IOException, ServletException;

This gives the Filter object a chance to process the request, forward the request to
the next component in the chain, or reply to the client itself.

Note that the request and response parameters are declared of type Serv-
letRequest and ServletResponse, respectively. Thus, the Filter API is not
restricted to only HTTP servlets. However, if the filter is used in a web application,
which uses the HTTP protocol, these variables refer to objects of type HttpServ-
letRequest and HttpServletResponse, respectively. Casting these parame-
ters to their corresponding HTTP types before using them is a typical implementation
of this method.

The uses of this method vary from filter to filter. A simple auditing filter may
retrieve the request URL, the request parameters, and the request headers, and then log
them to a file. A security filter may authenticate the request and decide to either for-
ward the request to the resource or reject access to the designated resource. Yet another
type of filter may wrap the ServletRequest and ServletResponse parameter
objects with wrapper classes, and alter the request and response messages partially or
completely.

A rather odd implementation is to route the request to another resource using the
include() and forward() methods of RequestDispatcher. The Request-
Dispatcher object can be obtained using request.getRequestDispatcher().

In case of an irrecoverable error during the processing, doFilter() may decide
to throw an IOException, a ServletException, or a subclass of either of
these exceptions.

The destroy() method

The destroy() method of the Filter interface is analogous to the destroy()
method of the Servlet interface. The servlet container calls this method as the last
method on the filter object. This is the signature of the destroy() method:

 public void destroy();

This gives the filter object a chance to release the resources acquired during its lifetime
and to perform cleanup tasks, if any, before it goes out of service. This method does
not declare any exceptions.
104 CHAPTER 7 USING FILTERS

Licensed to Tricia Fu <tricia.fu@gmail.com>

7.2.2 The FilterConfig interface

Just as a servlet has a ServletConfig, a filter has a FilterConfig. This interface
provides the initialization parameters to the filter. It declares four methods, as shown
in table 7.3.

The servlet container provides a concrete implementation of the FilterConfig
interface. It creates an instance of this implementation class, initializes it with the ini-
tialization parameter values, and passes it as a parameter to the Filter.init()
method. The name and initialization parameters are specified in the deployment
descriptor, which we will discuss in section 7.3.

Most important, FilterConfig also provides a reference to the Servlet-
Context in which the filter is installed. A filter can use the ServletContext to
share application-scoped attributes with other components of the web application.

7.2.3 The FilterChain interface

The FilterChain interface has just one method, described in table 7.4.

The servlet container provides an implementation of this interface and passes an
instance of it in the doFilter() method of the Filter interface. Within the
doFilter() method, we can use this interface to pass the request to the next
component in the chain, which is either another filter or the actual resource if this is

Table 7.3 Methods of the javax.servlet.FilterConfig interface

Method Description

String getFilterName() Returns the name of the filter specified in the
deployment descriptor.

String getInitParameter(String) Returns the value of the parameter specified in
the deployment descriptor.

Enumeration getInitParameterNames() Returns the names of all the parameters speci-
fied in the deployment descriptor.

ServletContext getServletContext() Returns the ServletContext object associ-
ated with the web application. Filters can use it
to get and set application-scoped attributes.

Table 7.4 The javax.servlet.FilterChain interface method

Method Description

void doFilter
(ServletRequest,
ServletResponse);

We call this method from the doFilter() method of a Filter
object to continue the process of filter chaining. It passes the control
to the next filter in the chain or to the actual resource if this is the last
filter in the chain.
THE FILTER API 105

the last filter in the chain. The two parameters of type ServletRequest and

Licensed to Tricia Fu <tricia.fu@gmail.com>

ServletResponse that we pass in this method are received by the next component
in the chain in its doFilter() or service() method.

7.2.4 The request and response wrapper classes

ServletRequestWrapper and HttpServletRequestWrapper provide a
convenient implementation of the ServletRequest and HttpServlet-
Request interfaces, respectively, that we can subclass if we want to alter the request
before sending it to the next component of the filter chain. Similarly,
ServletResponseWrapper and HttpServletResponseWrapper are used
if we want to alter the response received from the previous component. These objects
can be passed as parameters to the doFilter() method of the FilterChain
interface. We will see how to do this in section 7.4.

7.3 CONFIGURING A FILTER

A filter is configured using two deployment descriptor elements: <filter> and
<filter-mapping>. Each <filter> element introduces a new filter into the web
application, while each <filter-mapping> element associates a filter with a set of
request URIs. Both elements come directly under <web-app> and are optional. These
elements are similar to the <servlet> and <servlet-mapping> elements.

7.3.1 The <filter> element

Here is the definition of the <filter> element:

 <!ELEMENT filter (icon?, filter-name, display-name?, description?,
 filter-class, init-param*)>

As you can see from the above definition, each filter requires a <filter-name>
and a <filter-class> that implements the filter. Other elements—<icon>,
<display-name>, <description>, and <init-param>—serve the usual pur-
poses and are optional.

The following example illustrates the use of the <filter> element:

 <filter>
 <filter-name>ValidatorFilter</filter-name>
 <description>Validates the requests</description>
 <filter-class>com.manning.filters.ValidatorFilter</filter-class>
 <init-param>
 <param-name>locale</param-name>
 <param-value>USA</param-value>
 </init-param>
 </filter>

This code introduces a filter named ValidatorFilter. The servlet container
will create an instance of the com.manning.filters.ValidatorFilter
106 CHAPTER 7 USING FILTERS

class and associate it with this name. At the time of initialization, the filter can

Licensed to Tricia Fu <tricia.fu@gmail.com>

retrieve the locale parameter by calling filterConfig.getParameter-
Value("locale").

7.3.2 The <filter-mapping> element

This element works exactly like the <servlet-mapping> element that we dis-
cussed in detail in chapter 5, “Structure and deployment.” The <filter-
mapping> element is defined as follows:

 <!ELEMENT filter-mapping (filter-name, (url-pattern | servlet-name))>

The <filter-name> element is the name of the filter as defined in the <filter>
element, <url-pattern> is used to apply the filter to a set of requests identified by
a particular URL pattern, and <servlet-name> is used to apply the filter to all the
requests that are serviced by the servlet identified by this servlet name. In the case of
<url-pattern>, the pattern matching follows the same rules for servlet mapping
that we described in chapter 5.

The following examples illustrate the use of the <filter-mapping> element:

 <filter-mapping>
 <filter-name>ValidatorFilter</filter-name>
 <url-pattern>*.doc</url-pattern>
 </filter-mapping>

 <filter-mapping>
 <filter-name>ValidatorFilter</filter-name>
 <servlet-name>reportServlet</servlet-name>
 </filter-mapping>

The first filter mapping shown above associates ValidatorFilter with all the
requests that try to access a file with the extension .doc, while the second filter map-
ping associates ValidatorFilter with all the requests that are to be serviced by
the servlet named reportServlet. The servlet name used here must refer to a serv-
let defined using the <servlet> element in the deployment descriptor.

7.3.3 Configuring a filter chain

In some cases, you may need to apply multiple filters to the same request. Such filter
chains can be configured using multiple <filter-mapping> elements. When the
servlet container receives a request, it finds all the filter mappings with a URL pattern
that matches the request URI. This becomes the first set of filters in the filter chain.
Next, it finds all the filter mappings with a servlet name that matches the request URI.
This becomes the second set of filters in the filter chain. In both sets, the order of the
filters is the order in which they appear in the deployment descriptor.

To understand this process, consider the filter mappings and servlet mapping in the
web.xml file shown in listing 7.2.
CONFIGURING A FILTER 107

Licensed to Tricia Fu <tricia.fu@gmail.com>

<web-app>

 <filter>
 <filter-name>FilterA</filter-name>
 <filter-class>TestFilter</filter-class>
 </filter>
 <filter>
 <filter-name>FilterB</filter-name>
 <filter-class>TestFilter</filter-class>
 </filter>
 <filter>
 <filter-name>FilterC</filter-name>
 <filter-class>TestFilter</filter-class>
 </filter>
 <filter>
 <filter-name>FilterD</filter-name>
 <filter-class>TestFilter</filter-class>
 </filter>
 <filter>
 <filter-name>FilterE</filter-name>
 <filter-class>TestFilter</filter-class>
 </filter>

<!-- associate FilterA and FilterB to RedServlet -->
 <filter-mapping>
 <filter-name>FilterA</filter-name>
 <servlet-name>RedServlet</servlet-name>
 </filter-mapping>
 <filter-mapping>
 <filter-name>FilterB</filter-name>
 <servlet-name>RedServlet</servlet-name>
 </filter-mapping>

<!-- associate FilterC to a request matching /red/* -->
 <filter-mapping>
 <filter-name>FilterC</filter-name>
 <url-pattern>/red/*</url-pattern>
 </filter-mapping>

<!-- associate FilterD to a request matching /red/red/* -->
 <filter-mapping>
 <filter-name>FilterD</filter-name>
 <url-pattern>/red/red/*</url-pattern>
 </filter-mapping>

<!-- associate FilterE to a request matching *.red -->
 <filter-mapping>
 <filter-name>FilterE</filter-name>
 <url-pattern>*.red</url-pattern>
 </filter-mapping>

Listing 7.2 A web.xml file for illustrating filter chaining
108 CHAPTER 7 USING FILTERS

 <servlet>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <servlet-name>RedServlet</servlet-name>
 <servlet-class>RedServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>RedServlet</servlet-name>
 <url-pattern>/red/red/red/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>

 <servlet-name>RedServlet</servlet-name>
 <url-pattern>*.red</url-pattern>
 </servlet-mapping>

<web-app>

In web.xml, shown in listing 7.2, we have associated

1 FilterA and FilterB with RedServlet using the servlet name in the fil-
ter mapping elements

2 FilterC to a request whose URI matches /red/*

3 FilterD to a request whose URI matches /red/red/*

4 FilterE to a request whose URI matches *.red

We have also configured RedServlet to service requests having the URI pattern of
/red/red/red/* and *.red.

Table 7.5 shows the order of filter invocations for various request URIs. We have
not shown the base URIs for any of the request URIs in the table, since it is the same
for all: http://localhost:8080/chapter07/.

Table 7.5 Order of filter invocation in filter chaining

Request URI
Filter Invocation

Order

Reason

Request

Serviced by

RedServlet

Because Of

Matching Filter

Mappings with

URL Pattern

Matching Filter

Mappings with

Servlet Name

aaa.red FilterE, FilterA, FilterB *.red FilterE FilterA, FilterB

red/aaa.red FilterC, FilterE,
FilterA, FilterB

*.red FilterC, FilterE FilterA, FilterB

red/red/aaa.red FilterC, FilterD,
FilterE, FilterA, FilterB

*.red FilterC, FilterD,
FilterE

FilterA, FilterB

red/red/red/
aaa.red

FilterC, FilterD, Fil-
terE, FilterA, FilterB

*.red and /red/
red/ red/*

FilterC, FilterD,
FilterE,

FilterA, FilterB

red/red/red/aaa FilterC, FilterD, FilterA,
FilterB

/red/red/red/* FilterC, FilterD FilterA, FilterB
CONFIGURING A FILTER 109

continued on next page

Licensed to Tricia Fu <tricia.fu@gmail.com>

In table 7.5, observe the following points:

• The container will call the filters that match the request URI (url-pattern)
before it calls the filters that match the servlet name to which the request will be
delegated (servlet-name). Thus, FilterC, FilterD, and FilterE are
always called before FilterA and FilterB.

• Whenever called, FilterC, FilterD, and FilterE are always called in this
order since they are configured in this order in the web.xml file.

• Whenever RedServlet is invoked, FilterA and FilterB are called in this
order, since they are configured in this order in the web.xml file.

We have provided this test application on the Manning web site. You can try it out
with different request URIs and see the results.

7.4 ADVANCED FEATURES

In addition to monitoring the communication between the clients and the web appli-
cation components, filters can manipulate the requests and alter the responses. In this
section, we will learn about these features.

7.4.1 Using the request and response wrappers

All four wrapper classes—ServletRequestWrapper, ServletResponse-
Wrapper, HttpServletRequestWrapper, and HttpServletResponse-
Wrapper—work in the same way. They take a request or a response object in their
constructor and delegate all the method calls to that object. This allows us to extend
these classes and override any methods to provide a customized behavior.

In this section, we will use these classes in a filter to solve a simple problem. We
have a legacy system that generates reports in a plain ASCII text format and stores them

red/red/aaa FilterC, FilterD NONE (404
Error)

FilterC, Filter D

red/aaa FilterC NONE (404
Error)

FilterC

red/red/red/
aaa.doc

FilterC, FilterD, FilterA,
FilterB

/red/red/red/* FilterC, FilterD FilterA, FilterB

aaa.doc None NONE (404
Error)

Table 7.5 Order of filter invocation in filter chaining (continued)

Request URI
Filter Invocation

Order

Reason

Request

Serviced by

RedServlet

Because Of

Matching Filter

Mappings with

URL Pattern

Matching Filter

Mappings with

Servlet Name
110 CHAPTER 7 USING FILTERS

in a text file with an extension of .txt. We want these reports to be accessible from

Licensed to Tricia Fu <tricia.fu@gmail.com>

browsers with an image displayed as the background of the report. For example,
figure 7.3 shows how a sample report should display on the browser.

At the same time, we also do not want the browser to cache the report files. These
two problems can be easily solved if we are able to do the following:

1 Embed the text of the report into <html> and <body> tags with an appropri-
ate image as the background:

 <html>
 <body background="textReport.gif">
 <pre>
 text of the report here.
 </pre>
 </body>
 </html>

The background attribute of the <body> element will display the given
image as the background of the report, while the <pre> tag will keep the for-
matting of the textual data intact.

2 Override the If-Modified-Since header. Browsers send this header so that
the server can determine whether the resource needs to be sent. If the resource
has not been modified after the period specified by the If-Modified-Since
value, then the server does not send the resource at all.

For this purpose, we will filter all the requests for files with the extension .txt. Our

Figure 7.3 A sample report with a background image
ADVANCED FEATURES 111

filter will do two things:

Licensed to Tricia Fu <tricia.fu@gmail.com>

1 Wrap the request into an HttpServletRequestWrapper and override the
getHeader() method to return null for the If-Modified-Since
header. A null value for this header ensures that the server does send the file.

2 Wrap the response object into an HttpServletResponseWrapper so that
the filter can modify the response and append the required HTML before send-
ing it to the client.

Let’s now look at the code that implements this. Listing 7.3 shows the code for Non-
CachingRequestWrapper.java, which customizes the behavior of Http-
ServletRequestWrapper.

import javax.servlet.*;
import javax.servlet.http.*;
public class NonCachingRequestWrapper extends HttpServletRequestWrapper
{
 public NonCachingRequestWrapper(HttpServletRequest req)
 {
 super(req);
 }

 public String getHeader(String name)
 {
 // hide only the If-Modified-Since header
 // and return the actual value for other headers
 if(name.equals("If-Modified-Since"))
 {
 return null;
 }
 else
 {

 return super.getHeader(name);
 }
 }
}

The code for NonCachingRequestWrapper is quite simple. It overrides the get-
Header() method and returns null for the If-Modified-Since header. Since
this class extends from HttpServletRequestWrapper, all other methods are del-
egated to the underlying request object that is passed in the constructor.

Listing 7.4 shows the code for TextResponseWrapper, which customizes the
behavior of HttpServletResponseWrapper.

import java.io.*;

Listing 7.3 Wrapping a request to hide a header value

Listing 7.4 Wrapping a response to buffer text data
112 CHAPTER 7 USING FILTERS

import javax.servlet.*;
import javax.servlet.http.*;

Licensed to Tricia Fu <tricia.fu@gmail.com>

public class TextResponseWrapper
 extends HttpServletResponseWrapper
{

 //This inner class creates a ServletOutputStream that
 //dumps everything that is written to it to a byte array
 //instead of sending it to the client.
 private static class ByteArrayServletOutputStream
 extends ServletOutputStream

 {
 ByteArrayOutputStream baos;
 ByteArrayServletOutputStream(ByteArrayOutputStream baos)
 {
 this.baos = baos;
 }

 public void write(int param) throws java.io.IOException
 {
 baos.write(param);
 }
 }

 //the actual ByteArrayOutputStream object that is used by
 //the PrintWriter as well as ServletOutputStream
 private ByteArrayOutputStream baos
 = new ByteArrayOutputStream();

 //This print writer is built over the ByteArrayOutputStream.
 private PrintWriter pw = new PrintWriter(baos);

 //This ServletOutputStream is built over the ByteArrayOutputStream.
 private ByteArrayServletOutputStream basos
 = new ByteArrayServletOutputStream(baos);

 public TextResponseWrapper(HttpServletResponse response)
 {
 super(response);
 }

 public PrintWriter getWriter()
 {
 //Returns our own PrintWriter that writes to a byte array
 //instead of returning the actual PrintWriter associated
 //with the response.
 return pw;
 }

 public ServletOutputStream getOutputStream()
 {
 //Returns our own ServletOutputStream that writes to a
 //byte array instead of returning the actual
 //ServletOutputStream associated with the response.

 return basos;
ADVANCED FEATURES 113

 }

Licensed to Tricia Fu <tricia.fu@gmail.com>

 byte[] toByteArray()
 {
 return baos.toByteArray();
 }
}

The code for TextResponseWrapper looks complicated but is actually very
straightforward. It creates a ByteArrayOutputStream to store all the data that is
written by the server. It overrides the getWriter() and getOutputStream()
methods of HttpServletResponse to return the customized PrintWriter and
ServletOutputStream that are built over the same ByteArrayOuptut-
Stream. Thus, no data is sent to the client.

Listing 7.5 shows the code for TextToHTMLFilter.java, which converts a
textual report into a presentable HTML format as required.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class TextToHTMLFilter implements Filter
{
 private FilterConfig filterConfig;

 public void init(FilterConfig filterConfig)
 {
 this.filterConfig = filterConfig;
 }

 public void doFilter(
 ServletRequest request,
 ServletResponse response,
 FilterChain filterChain
) throws ServletException, IOException
 {

 HttpServletRequest req = (HttpServletRequest) request
 HttpServletResponse res = (HttpServletResponse) response;

 NonCachingRequestWrapper ncrw
 = new NonCachingRequestWrapper(req);
 TextResponseWrapper trw = new TextResponseWrapper(res);

 //Passes on the wrapped request and response objects
 filterChain.doFilter(ncrw, trw);

 String top = "<html><body background=\"textReport.gif\"><pre>";
 String bottom = "</pre></body></html>";

 //Embeds the textual data into <html>, <body>, and <pre> tags.

Listing 7.5 Code for TextToHTMLFilter.java
114 CHAPTER 7 USING FILTERS

 StringBuffer htmlFile = new StringBuffer(top);

Licensed to Tricia Fu <tricia.fu@gmail.com>

 String textFile = new String(trw.toByteArray());
 htmlFile.append(textFile);
 htmlFile.append("
"+bottom);

 //Sets the content type to text/html
 res.setContentType("text/html");

 //Sets the content type to new length
 res.setContentLength(htmlFile.length());

 //Writes the new data to the actual PrintWriter
 PrintWriter pw = res.getWriter();
 pw.println(htmlFile.toString());
 }

 public void destroy()
 {
 }
}

The code in listing 7.5 wraps the actual request and response objects into the
NonCachingRequestWrapper and TextResponseWrapper objects, respec-
tively, and then passes them on to the next component of the filter chain using the
doFilter() method.

When the filterChain.doFilter() call returns, the text report is already
written to the TestResponseWrapper object. Our filter retrieves the text data
from this object and embeds it into the appropriate HTML tags. Finally, it writes the
data to the actual PrintWriter object that sends the data to the client.

Deploying the filter

As explained earlier, deploying this filter requires two steps:

1 Copy all the class files to the WEB-INF\classes directory.

2 Set the filter and the filter mapping in the web.xml file of the web application
as shown here:

 <filter>
 <filter-name>TextToHTML</filter-name>
 <filter-class>TextToHTMLFilter</filter-class>
 </filter>

 <filter-mapping>
 <filter-name>TextToHTML</filter-name>
 <url-pattern>*.txt</url-pattern>
 </filter-mapping>

If you have copied the chapter07 directory to the webapps directory of your Tom-
cat installation, you can open the given web.xml file and see these settings.
ADVANCED FEATURES 115

Licensed to Tricia Fu <tricia.fu@gmail.com>

Running the application

To run the application, restart Tomcat and request any text file that is available in this
web application from the browser. For testing purposes, we have provided a sample
text file and a GIF image. You can view them through this URL:

http://localhost:8080/chapter07/ReportJanFeb.txt

7.4.2 Important points to remember about filters

You need to understand these points when using filters:
There is one filter per <filter> entry in the web.xml file, per virtual machine.

A servlet container is free to run multiple threads on the same filter object to service
multiple requests simultaneously.

As of Servlet spec 2.4, filters can now be configured to be invoked on any combi-
nation of the following:

• As a result of calling RequestDispatcher.forward()

• As a result of calling RequestDispatcher.include()

• On error pages

The execution points used are controlled in the filter mapping in web.xml; if not spec-
ified, a filter will only be invoked on incoming requests. In the example below, all pos-
sible ways to invoke a filter have been enabled:

<filter-mapping>
<filter-name>AccessLog</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>REQUEST</dispatcher>
<dispatcher>FORWARD</dispatcher>
<dispatcher>INCLUDE</dispatcher>
<dispatcher>ERROR</dispatcher>

</filter-mapping>

7.4.3 Using filters with MVC

As we discussed in chapter 2, “Understanding JavaServer Pages,” the JSP Model 2
architecture is based on the MVC design pattern. It breaks a web application down into
three distinct areas, where the JavaBeans act as the model, the JSP pages act as the view,
and the servlets act as the controller. A request, or a group of related requests, is actu-
ally handled by a servlet, which retrieves the data and creates JavaBeans to hold the
data. After creating the beans, it uses a RequestDispatcher object to forward the
request to an appropriate JSP page. The JSP page uses the beans and generates the view.

This approach works well when the view to be displayed is determined by the busi-
ness rules. For example, the page that should be displayed after a user logs in may
depend on the access rights she has. Therefore, the final presentation depends on the
116 CHAPTER 7 USING FILTERS

servlet code that decides which JSP page the request is to be forwarded to.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Now consider another situation. An application is required to display some reports
in either XML or HTML format as requested by the client. For this purpose, you
develop two JSP pages: xmlView.jsp and htmlView.jsp. You also develop a
servlet that generates the data needed by both the JSP pages. In the Model 2 architec-
ture, the client request would go to this servlet. The servlet would retrieve the data and
then dispatch the request to either xmlView.jsp or htmlView.jsp. The problem
with this solution is that the servlet needs an extra parameter in the request that will
indicate which view is being requested. Furthermore, the servlet will have to hard-code
the names of the JSP pages. This means that adding a new view will require a code
change in the servlet.

Filters are very useful in the situation described here. We can code the servlet’s logic
of retrieving the data and creating JavaBeans in a filter and apply this filter to both
views. The user can directly request the xmlView.jsp or htmlView.jsp page.
Since the filter will be executed first, the necessary beans will be available when the
request reaches the JSP page. This architecture eliminates the need for an extra param-
eter to inform the filter about the view; this information is already present in the name
of the resource given in the request. It also provides a clean way of adding a new view.
For example, if we need to provide a text view, we can develop a textView.jsp file
and apply the same filter on this JSP page. There is no code change in the filter. Thus,
in such situations filters are a better choice for controllers than servlets.

7.5 SUMMARY

Filters add value to a web application by monitoring the requests and responses that
are passed between the client and the server. With filters, we can analyze, manipulate,
and redirect requests and responses.

In this chapter, we learned about the Filter API, including the three interfaces—
Filter, FilterConfig, and FilterChain—and we saw how to configure fil-
ters in the deployment descriptor. We then looked at the way we can use a filter to
wrap a request or a response in a customized object before delivering it to its destina-
tion. Within the MVC model, filters, rather than servlets, can better play the role of
a controller in some situations.

7.6 REVIEW QUESTIONS

1. Which elements are allowed in the <filter-mapping> element of the deploy-
ment descriptor? (Select three)

a <servlet-name>

b <filter-class>

c <dispatcher>

d <url-pattern>

e <filter-chain>
REVIEW QUESTIONS 117

Licensed to Tricia Fu <tricia.fu@gmail.com>

2. What is wrong with the following code?

public void doFilter(ServletRequest req, ServletResponse, res,
FilterChain chain)
throws ServletException, IOException {

 chain.doFilter(req, res);
 HttpServletRequest request = (HttpServletRequest)req;
 HttpSession session = request.getSession();
 if (session.getAttribute("login") == null) {
 session.setAttribute("login"”, new Login());
 }
}

a The doFilter() method signature is incorrect; it should take HttpServle-
tRequest and HttpServletResponse.

b The doFilter() method should also throw FilterException.
c The call to chain.doFilter(req, res) should be this.doFilter(req,

res, chain).
d Accessing the request after chain.doFilter() results in an IllegalState-

Exception.
e Nothing is wrong with this filter.

3. Given these filter mapping declarations:
<filter-mapping>
 <filter-name>FilterOne</filter-name>
 <url-pattern>/admin/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
</filter-mapping>
<filter-mapping>
 <filter-name>FilterTwo</filter-name>
 <url-pattern>/users/*</url-pattern>
</filter-mapping>
<filter-mapping>
 <filter-name>FilterThree</filter-name>
 <url-pattern>/admin/*</url-pattern>
</filter-mapping>
<filter-mapping>
 <filter-name>FilterTwo</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

In what order are the filters invoked for the following browser request?

/admin/index.jsp

a FilterOne, FilterThree

b FilterOne, FilterTwo, FilterThree

c FilterThree, FilterTwo

d FilterThree, FilterTwo
118 CHAPTER 7 USING FILTERS

e FilterThree

f None of these filters are invoked.

Licensed to Tricia Fu <tricia.fu@gmail.com>

C H A P T E R 8

Session management
8.1 Understanding state and sessions 120
8.2 Using HttpSession 121

8.4 Implementing session support 131
8.5 Summary 136
8.3 Understanding session timeout 130 8.6 Review questions 136
EXAM OBJECTIVES

 4.1 Write servlet code to store objects into a session object and retrieve objects from a
session object.
(Section 8.2)

 4.2 Given a scenario,

• Describe the APIs used to access the session object,
• Explain when the session object was created, and
• Describe the mechanisms used to destroy the session object and when it was

destroyed

(Sections 8.2 and 8.3)

 4.3 Using session listeners,

• Write code to respond to an event when an object is added to a session, and
• Write code to respond to an event when a session migrates from one VM to

another
119

(Section 8.2.2)

Licensed to Tricia Fu <tricia.fu@gmail.com>

 4.4 Given a scenario,

• Describe which session management mechanism the Web container should employ,
• How cookies might be used to manage sessions,
• How URL rewriting might be used to manage sessions, and
• Write servlet code to perform URL rewriting

(Section 8.4)

INTRODUCTION

Since a web application is normally interacting with more than one user at the same
time, it needs to remember each user and his history of transactions. The session pro-
vides this continuity by tracking the interaction between a user and the web applica-
tion. To do well on the exam, you must know how to create and manage a session and
how to associate it with its specific user.

In this chapter, we will discuss the session object, three of the session-related lis-
tener interfaces (we introduced the fourth session-related listener interface in
chapter 6, “The servlet container model”), and the session timeout. We will also learn
how to track the sessions using cookies and URL rewriting.

8.1 UNDERSTANDING STATE AND SESSIONS

The ability of a protocol to remember the user and her requests is called its state. From
this perspective, protocols are divided into two types: stateful and stateless. In
chapter 3, we observed that HTTP is a stateless protocol; each request to a web server
and its corresponding response is handled as one isolated transaction.

Since all of the requests are independent and unrelated, the HTTP server has no
way to determine whether a series of requests came from the same client or from dif-
ferent clients. This means that the server cannot maintain the state of the client
between multiple requests; in other words, the server cannot remember the client.

In some cases, there may be no need to remember the client. For example, an
online library catalog does not need to maintain the state of the client. While stateless
HTTP may work well for this type of simple web browsing, the interaction between
a client and a server in a web application needs to be stateful. A classic example is a
shopping cart application. A user may add items and remove items from his shopping
cart many times. At any time during the process, the server should be able to display
the list of items in the cart and calculate their total cost. In order to do this, the server
must track all of the requests and associate them with the user. We use a session to do
this and turn stateless HTTP pages into a stateful Web application.

A session is an uninterrupted series of request-response interactions between a cli-
ent and a server. For each request that is a part of this session, the server is able to iden-
tify the request as coming from the same client. A session starts when an unknown
client sends the first request to the web application server. It ends when either the cli-
120 CHAPTER 8 SESSION MANAGEMENT

ent explicitly ends the session or the server does not receive any requests from the client

Licensed to Tricia Fu <tricia.fu@gmail.com>

within a predefined time limit. When the session ends, the server conveniently forgets
the client as well as all the requests that the client may have made.

It should be made clear at this point that the first request from the client to the web
application server may not be the very first interaction between that client and the
server. By first request, we mean the request that requires a session to be created. We
call it the first request because this is the request when the numbering of the requests
starts (logically) and this is the request from which the server starts remembering the
client. For example, a server can allow a user to browse a catalog of items without cre-
ating a session. However, as soon as the user logs in or adds an item to the shopping
cart, it is clear that a session must be started.

So, how does a server establish and maintain a session with a client if HTTP does
not provide any way to remember the client? There is only one way:

• When the server receives the first request from a client, the server initiates a ses-
sion and assigns the session a unique identifier.

• The client must include this unique identifier with each subsequent request.
The server inspects the identifier and associates the request with the corre-
sponding session.

You may wonder why a server can’t just look at the IP address of a request to identify
a user. Many users access the Internet through a proxy server, in which case the server
gets the IP address of the proxy server and not of the actual user, which makes the IP
address nonunique for the set of users using that proxy server. For this reason, the
server generates a unique identifier instead of relying on the IP address. This identifier
is called a session ID, and the server uses this ID to associate the client’s requests in a
session. The exam requires you to understand the two most commonly used
approaches for implementing session support: cookies and URL rewriting. We will dis-
cuss both of these approaches later in this chapter, in section 8.4.

In the following sections, we will see how the Servlet API helps us in implementing
stateful web applications.

8.2 USING HTTPSESSION

The Servlet API abstracts the concept of session through the javax.servlet.
http.HttpSession interface. This interface is implemented by the servlet con-
tainer and provides a simple way to track the user’s session.

A servlet container creates a new HttpSession object when it starts a session for
a client. In addition to representing the session, this object acts as the data store for the
information related to that session. In short, it provides a way to store data into memory
and then retrieve it when the same user comes back later. Servlets can use this object to
maintain the state of the session. As you’ll recall, we discussed sharing data within the
session scope using the HttpSession object in chapter 4, “The servlet model.”
USING HTTPSESSION 121

To put this in perspective, let’s go back to the shopping cart example. The servlet
container creates an HttpSession object for a user when the user logs in. The

Licensed to Tricia Fu <tricia.fu@gmail.com>

servlet implementing the shopping cart application uses this object to maintain the list
of items selected by the user. The servlet updates this list as the user adds or removes
the items from his cart. Anytime the user wants to check out, the servlet retrieves the
list of items from the session and calculates the total cost. Once the payment is made,
the servlet closes the session; if the user sends another request, a new session is started.

Obviously, the servlet container creates as many HttpSession objects as there
are sessions. In other words, there is an HttpSession object corresponding to each
session (or user). However, we need not worry about associating the HttpSession
objects with the users. The servlet container does that for us and, upon request, auto-
matically returns the appropriate session object.

8.2.1 Working with an HttpSession

Using HttpSession is usually a three-step process:

1 Retrieve the session associated with the request.

2 Add or remove name-value pairs of attributes from the session.

3 Invalidate the session if required.

Often the client offers no indication that it is ending the session. For example, a user
may browse to another site and may not return for a long time. In this case, the server
will never know whether the user has ended her session. To help us in such situations,
the servlet container automatically invalidates the session after a certain period of inac-
tivity. The period is, of course, configurable through the deployment descriptor and
is known as the session timeout period. We will learn more about it in section 8.3.

Listing 8.1 contains the doPost() method of an imaginary ShoppingCart-
Servlet. This listing illustrates a common use of HttpSession.

//code for the doPost() method of ShoppingCartServlet
public void doPost(HttpServletRequest req,
 HttpServletResponse res)
{

 HttpSession session = req.getSession(true);
 List listOfItems =
 (List) session.getAttribute("listofitems");
 if(listOfItems == null)
 {
 listOfItems = new ArrayList();
 session.setAttribute("listofitems", listOfItems);
 }

 String itemcode = req.getParameter("itemcode");
 String command = req.getParameter("command");
 if("additem".equals(command))
 {

Listing 8.1 Using HttpSession methods

Retrieves the session

Retrieves an attribute
from the session

Sets an attribute
in the session
122 CHAPTER 8 SESSION MANAGEMENT

 listOfItems.add(itemcode);

Licensed to Tricia Fu <tricia.fu@gmail.com>

 }
 else if("removeitem".equals(command))
 {
 listOfItems.remove(itemcode);
 }
}

In listing 8.1, we first get a reference to the HttpSession object using req.get-
Session(true). This will create a new session if a session does not already exist for
the user. The HttpServletRequest interface provides two methods to retrieve the
session, as shown in table 8.1.

Notice that we have not written any code to identify the user. We just call the get-
Session() method and assume that it will return the same HttpSession object
each time we process a request from a specific user. It is the job of the implementation of
the getSession() method to analyze the request and find the right HttpSession
object associated with the request. We have used getSession(true) just to empha-
size that we want to create a new session if it does not exist, although getSession()
would have the same effect. A session will not be available for the first request sent by a
user. In that case, the user is a new client and a new session will be created for her.

After retrieving the session, we get the list of items from the session. We use the
HttpSession methods shown in table 8.2 to set and get the listofitems
attribute that stores the item codes in the session. If this is a new session, or if this is
the first time the user is adding an item, the session.getAttribute() will
return null, in which case we create a new List object and add it to the session. Then,
based on the command and itemCode request parameters, we either add or remove
the item from the list.

Table 8.1 HttpServletRequest methods for retrieving the session

Method Description

HttpSession getSession
(boolean create)

This method returns the current HttpSession associated with
this request, or if there is no current session and the create
parameter is true, then it returns a new session.

HttpSession getSession() This method is equivalent to calling getSession(true).

Table 8.2 HttpSession methods for setting/getting attributes

Method Description

void setAttribute(String name,
Object value)

This method adds the passed object to the ses-
sion, using the name specified.

Object getAttribute(String name) This method returns the object bound with the
specified name in this session, or null if no object
USING HTTPSESSION 123

is bound under the name.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Quizlet
Q: Listing 8.1 shows the doPost() method of ShoppingCartServ-

let. As you can see, this servlet only maintains the list of item codes.
However, once a user has finished selecting the items, he needs to com-
plete the process by “checking out.” Is it possible to implement this
functionality using a different servlet instead of adding the functionality
to ShoppingCartServlet? Can you retrieve the listofitems
attribute associated with a user from another servlet?

A: Definitely. An HttpSession object associated with a user is accessible
from all of the components of a web application (servlets and JSP pages)
during the time that the components are serving a request from that
user. In this case, we can have a hyperlink named Check Out on our page
that refers to a different servlet named CheckOutServlet. This serv-
let can access the session information and retrieve the listofitems
attribute, as shown here:

 //code for the doGet() method of CheckOutServlet
 public void doGet(HttpServletRequest req,
 HttpServletResponse res)
 {
 HttpSession session = req.getSession();

 List listOfItems =
 (List) session.getAttribute("listofitems");

 //process the listOfItems.
 }

As we mentioned earlier, the HttpServletRequest.getSes-
sion() method will return the correct session object for a specific user.

8.2.2 Handling session events with listener interfaces

As we saw in chapter 6, listener interfaces are a way to receive notifications when
important events occur in a web application. To receive notification of an event, we
need to write a class that implements the corresponding listener interface. The servlet
container then calls the appropriate methods on the objects of this class when the
events occur.

The Servlet API defines four listeners and two events related to the session in the
javax.servlet.http package:

• HttpSessionAttributeListener and HttpSessionBindingEvent

• HttpSessionBindingListener and HttpSessionBindingEvent

• HttpSessionListener and HttpSessionEvent

• HttpSessionActivationListener and HttpSessionEvent.
124 CHAPTER 8 SESSION MANAGEMENT

Licensed to Tricia Fu <tricia.fu@gmail.com>

All four listener interfaces extend java.util.EventListener. HttpSession-
Event extends java.util.EventObject and HttpSessionBindingEvent
extends HttpSessionEvent.

HttpSessionAttributeListener

The HttpSessionAttributeListener interface allows a developer to receive
notifications whenever attributes are added to, removed from, or replaced in the
attribute list of any of the HttpSession objects of the web application. We specify
the class that implements this interface in the deployment descriptor. We discussed this
listener (javax.servlet.http.HttpSessionAttributeListener) in detail
in chapter 6. Now let’s look at the three other listeners.

HttpSessionBindingListener

The HttpSessionBindingListener interface is implemented by the classes
whose objects need to receive notifications whenever they are added to or removed
from a session. We do not have to inform the container about such objects explicitly
via the deployment descriptor. Whenever an object is added to or removed from any
session, the container introspects the interfaces implemented by that object. If the
object implements the HttpSessionBindingListener interface, the container
calls the corresponding notification methods shown in table 8.3.

The servlet container calls the interface methods even if the session is explicitly inval-
idated or has timed out. Listing 8.2 illustrates the use of this interface to log
HttpSessionBindingEvents.

import javax.servlet.*;
import javax.servlet.http.*;

//An entry will be added to the log file whenever objects of
//this class are added to or removed from a session.
public class CustomAttribute implements
 HttpSessionBindingListener
{

Table 8.3 HttpSessionBindingListener methods for receiving notification of a change in

the attribute list of HttpSession

Method Description

void valueBound
(HttpSessionBindingEvent event)

Notifies the object that it is being bound to
a session

void valueUnbound
(HttpSessionBindingEvent event)

Notifies the object that it is being unbound from
a session

Listing 8.2 Implementing HttpSessionBindingListener
USING HTTPSESSION 125

 public Object theValue;

Licensed to Tricia Fu <tricia.fu@gmail.com>

 public void valueBound(HttpSessionBindingEvent e)
 {
 HttpSession session = e.getSession();
 session.getServletContext().log("CustomAttribute "+
 theValue+"bound to a session");
 }

 public void valueUnbound(HttpSessionBindingEvent e)
 {

 HttpSession session = e.getSession();
 session.getServletContext().log("CustomAttribute "+
 theValue+" unbound from a session.");
 }
}

In the example code in listing 8.2, we retrieve the session object from HttpSes-
sionBindingEvent. From the session object, we retrieve the ServletContext
object and log the messages using the ServletContext.log() method.

You may wonder what the difference is between HttpSessionAttribute-
Listener and HttpSessionBindingListener, since both are used for
listening to changes in the attribute list of a session. The difference is that Http-
SessionAttributeListener is configured in the deployment descriptor and the
container creates only one instance of the specified class. HttpSessionBindingEv-
ents generated from all the sessions are sent to this object. On the other hand,
HttpSessionBindingListener is not configured in the deployment descriptor.
The servlet container calls methods on an object implementing this interface only if that
object is added to or removed from a session. While the HttpSessionAttribute-
Listener interface is used to track the activity of all the sessions on an application
level, the HttpSessionBindingListener interface is used to take actions when
certain kinds of objects are added to or removed from a session.

HttpSessionListener

The HttpSessionListener interface is used to receive notifications when a ses-
sion is created or destroyed. The listener class implementing this interface must be
configured in the deployment descriptor. It has the methods shown in table 8.4.

This interface can be used to monitor the number of active sessions, as demonstrated

Table 8.4 HttpSessionListener methods for receiving notification when a session is

created or destroyed

Method Description

void sessionCreated(HttpSessionEvent se) Called when a session is created

void sessionDestroyed(HttpSessionEvent se) Called when a session is destroyed

Retrieves the session
associated with this event
126 CHAPTER 8 SESSION MANAGEMENT

in the implementation of the HttpSessionListener interface in listing 8.3.

Licensed to Tricia Fu <tricia.fu@gmail.com>

import javax.servlet.http.*;

public class SessionCounter implements HttpSessionListener
{
 private static int activeSessions = 0;

 public void sessionCreated(HttpSessionEvent evt)
 {
 activeSessions++;
 System.out.println("No. of active sessions on:"+
 new java.util.Date()+" : "+activeSessions);
 }

 public void sessionDestroyed (HttpSessionEvent evt)
 {
 activeSessions--;
 }

}

In listing 8.3, we increment the session count when a new session is created in the
sessionCreated() method and decrement the session count when any session is
invalidated in the sessionDestroyed() method.

At first, it appears that this interface also might be very useful to clean up a user’s
transient data from the database when that user’s session ends. For example, as soon
as a user logs in, we can set the user ID in the session. When the user logs out or when
the session times out, we can use the sessionDestroyed() method to clean up
the database, as shown in listing 8.4.

import javax.servlet.*;
import javax.servlet.http.*;

public class BadSessionListener implements
 HttpSessionListener
{
 public void sessionCreated(HttpSessionEvent e)
 {
 //can't do much here as the session is just created and
 //does not contain anything yet, except the sessionid
 System.out.println("Session created: "+
 e.getSession().getId());
 }

 public void sessionDestroyed(HttpSessionEvent e)
 {
 HttpSession session = e.getSession();

Listing 8.3 Counting the number of sessions

Listing 8.4 Incorrect use of HttpSessionListener

Will
not
USING HTTPSESSION 127

 String userid = (String) session.getAttribute("userid"); work!

Licensed to Tricia Fu <tricia.fu@gmail.com>

 //delete user's transient data from the database
 //using the userid.
 }
}

In listing 8.4, the line session.getAttribute("userid"); will not work
because the servlet container calls the sessionDestroyed() method after the ses-
sion is invalidated. Therefore, a call to getAttribute() will throw an Illegal-
StateException.

So, how do we solve our problem of cleaning up the database when a session is
invalidated? The solution is a little cumbersome. We will create a class that wraps the
user ID and implements the HttpSessionBindingListener interface. When
the user logs in, for instance through a LoginServlet, instead of setting the user
ID directly in the session, we will set this wrapper in the session. The servlet container
will call valueUnbound() on the wrapper as soon as the session is invalidated. We
will use this method to clean up the database. Listing 8.5 illustrates the process.

import javax.servlet.*;
import javax.servlet.http.*;

public class UseridWrapper implements HttpSessionBindingListener
{
 public String userid = "default";
 public UseridWrapper(String id)
 {
 this.userid = id;
 }
 public void valueBound(HttpSessionBindingEvent e)
 {
 //insert transient user data into the database
 }

 public void valueUnbound(HttpSessionBindingEvent e)
 {
 //remove transient user data from the database
 }
}

The following code for the doPost() method of LoginServlet shows the use of
the UseridWrapper class:

//code for doPost() of LoginServlet
public void doPost(HttpServletRequest req, HttpServletResponse res)
{
 String userid = req.getParameter("userid");

Listing 8.5 Cleaning up the database using HttpSessionBindingListener
128 CHAPTER 8 SESSION MANAGEMENT

 String password = req.getParameter("password");

Licensed to Tricia Fu <tricia.fu@gmail.com>

 boolean valid = //validate the userid/password.
 if(valid)
 {
 UseridWrapper useridwrapper = new UseridWrapper(userid);
 req.getSession().setAttribute("useridwrapper", useridwrapper);
 }
 else
 {

 //forward the user to the login page.
 }
 ...
 ...
}

HttpSessionActivationListener

This interface is used by the session attributes to receive notifications when a session
is being migrated across the JVMs in a distributed environment. This interface declares
two methods, as shown in table 8.5.

We will not discuss this interface in detail since it is rarely used and is not required for
the exam.

Quizlet
Q: Which interface would you use to achieve the following?

1 You want to listen to the HttpSessionBindingEvents but none
of your session attributes implement the HttpSessionBinding-
Listener interface.

2 You want to monitor the average time users are logged into your web
application.

A: 1 Use HttpSessionAttributeListener. Remember, you will
have to configure it in the deployment descriptor.

2 Use HttpSessionListener. You can use the sessionCreated()
and sessionDestroyed() methods to calculate how long a user
has been logged in.

Table 8.5 HttpSessionActivationListener methods for receiving activation/

passivation notification in a distributed environment

Method Description

void
sessionDidActivate(HttpSessionEvent se)

Called just after the session is activated

void
sessionWillPassivate(HttpSessionEvent se)

Called when the session is about to
be passivated

Sets the UseridWrapper
object in the session
USING HTTPSESSION 129

Licensed to Tricia Fu <tricia.fu@gmail.com>

8.2.3 Invalidating a Session

We observed at the beginning of this chapter that a session is automatically terminated
when the user remains inactive for a specified period of time. In some cases, we may
also want to end the session programmatically. For instance, in our shopping cart
example, we would want to end the session after the payment process is complete so
that if the user sends another request, a new session is started with no items in the
shopping cart. HttpSession provides the method shown in table 8.6 for invalidat-
ing a session.

Listing 8.6 shows LogoutServlet’s doGet() method. It uses the invali-
date() method to expunge a session.

//code for doGet() of LogoutServlet
//This method will be invoked if a user clicks on
//a "Logout" button or hyperlink.
public void doGet(HttpServletRequest req,
 HttpServletResponse res)
{
 ...

 req.getSession().invalidate();
 //forward the user to the main page.
 ...
}

8.3 UNDERSTANDING SESSION TIMEOUT

Since the HTTP protocol does not provide any signal for the termination of the session
to the server, if the user does not click on some kind of a logout button or hyperlink,
the only way to determine whether a client is active or not is to observe the inactivity
period. If a user does not perform any action for a certain period of time, the server
assumes the user to be inactive and invalidates the session. The web.xml in listing 8.7
shows the configuration of the timeout period of a session.

Table 8.6 HttpSession method for invalidating a session

Method Description

void invalidate() This method invalidates this session and then unbinds any objects bound
to it. This means that the valueUnbound() method will be called on all
of its attributes that implement HttpSessionBindingListener. It
throws an IllegalStateException if the session is already invali-
dated.

Listing 8.6 Using HttpSession.invalidate() to expunge a session

Expunges the session
130 CHAPTER 8 SESSION MANAGEMENT

Licensed to Tricia Fu <tricia.fu@gmail.com>

<web-app>
…
<session-config>
 <session-timeout>30</session-timeout>
</session-config>
…
<web-app>

The <session-timeout> element contains the timeout in minutes. A value of 0
or less means that the session will never expire. The HttpSession interface pro-
vides the two methods shown in table 8.7 for getting and setting the timeout value
of a session.

It is important to note that setMaxInactiveInterval() affects only the session
on which it is called. Other sessions will still have the same timeout period as specified
in the deployment descriptor.

NOTE There are two inconsistencies in the way the session-timeout tag of
the deployment descriptor and the setMaxInactiveInterval()
method of HttpSession work:

1 The session-timeout value is specified in minutes, while the
setMaxInactiveInterval() method accepts seconds.

2 A session-timeout value of 0 or less means that the session will
never expire, while if we want to specify that a session will never
expire using the setMaxInactiveInterval() method, a negative
value (not 0) is required.

8.4 IMPLEMENTING SESSION SUPPORT

We have seen how storing attributes in the session object enables us to maintain the
state of the application. In this section, we will see how a servlet container associates

Listing 8.7 Configuring session timeout in web.xml

Table 8.7 HttpSession methods for getting/setting the timeout value of a session

Method Description

void setMaxInactiveInterval
(int seconds)

This method specifies the number of seconds
between client requests before the servlet container-
will invalidate this session. A negative value means
that the session will never expire.

int getMaxInactiveInterval() This method returns the maximum time interval, in
seconds, that the servlet container will keep this ses-
sion open between client accesses.

Sets timeout to 30 minutes
IMPLEMENTING SESSION SUPPORT 131

incoming requests with an appropriate HttpSession object. As we observed at the

Licensed to Tricia Fu <tricia.fu@gmail.com>

beginning of this chapter, the way containers provide support for HTTP sessions is to
identify each client with a unique ID, which is called a session ID, and force the client
to send that ID to the server with each request. Let’s go over in detail the steps that a
client and a server must take to track a session:

1 A new client sends a request to a server. Since this is the first request, it does not
contain any session ID.

2 The server creates a session and assigns it a new session ID. At this time, the ses-
sion is said to be in the new state. We can use session.isNew() to deter-
mine whether the session is in this state or not. The server then sends the ID
back to the client with the response.

3 The client gets the session ID and saves it for future requests. This is the first
time the client is aware of the existence of a session on the server.

4 The client sends another request, and this time, it sends the session ID with
the request.

5 The server receives the request and observes the session ID. It immediately asso-
ciates the request with the session that it had created earlier. At this time, the cli-
ent is said to have joined the session, which means the session is no longer in the
new state. Therefore, a call to session.isNew() will return false.

Steps 3–5 keep repeating for the life of the session. If the client does not send any
requests for a length of time that exceeds the session timeout, the server invalidates the
session. Once the session is invalidated, either programmatically or because it has
timed out, it cannot be resurrected even if the client sends the same session ID again.
After that, as far as the server is concerned, the next request from the client is consid-
ered to be the first request (as in step 1) that cannot be associated with an existing ses-
sion. The server will create a new session for the client and will assign it a new ID (as
in step 2).

In the following section, we look at two techniques—cookies and URL rewrit-
ing—that a servlet container uses to implement the steps described above to provide
session support.

8.4.1 Supporting sessions using cookies

In this technique, to manage the sending and receiving of session IDs, the servlet
container uses HTTP headers. As we saw in chapter 3, all HTTP messages—requests
as well as responses—contain header lines. While sending a response, a servlet con-
tainer adds a special header line containing the session ID. The container adds this
header line transparently to the servlet developer. The client, which is usually a
browser, receives the response, extracts the special header line, and stores it on the
local machine. The browser does this transparently to the user. While sending
another request, the client automatically adds a header line containing the stored ses-
132 CHAPTER 8 SESSION MANAGEMENT

sion ID.

Licensed to Tricia Fu <tricia.fu@gmail.com>

The header line that is stored by the browser on the user’s machine is called a cookie.
If you recall the discussion about HTTP headers, a header line is just a name-value pair.
Not surprisingly, the header name used for sending a cookie is cookie. A sample HTTP
request containing a cookie looks like this:

 POST /servlet/testServlet HTTP/1.1
 User-Agent= MOZILLA/1.0
 cookie=jsessionid=61C4F23524521390E70993E5120263C6
 Content-Type: application/x-www.formurlencoded

 userid=john

The value of the cookie header shown above is

 jsessionid=61C4F23524521390E70993E5120263C6

This technique was developed by Netscape and was adopted by all other browsers.
Back in the early days of the Internet, cookies were only used to keep the session ID.
But later on, companies started using cookies to store a lot of other information, such
as user IDs, preferences, and so forth. They also started using cookies to track the brows-
ing patterns of the users. Since the cookie management happens behind the scenes, very
soon cookies became known as a potential security hazard, and many users started dis-
liking them. Although most users still enable cookies in their browsers, some corporate
policies now disable them. When cookies are disabled, the browser ignores any cookie
header lines that are present in the HTTP responses, and consequently does not send
any cookie header lines in the requests.

For some web sites, session support is extremely important, and so they cannot rely
solely on cookies. In such cases, we need to use another technique that will work even
if the users disable cookies. We examine this technique in the next section.

8.4.2 Supporting sessions using URL rewriting

In the absence of cookie support, we can attach the session ID to all of the URLs that
are within an HTML page that is being sent as a response to the client. That way, when
the user clicks on one of the URLs, the session ID is automatically sent back to the
server as a part of the request line itself, instead of as a header line.

To better understand this, consider the following HTML page code returned by an
imaginary servlet named HomeServlet:

 <html>
 <head></head>

 <body>
 A test page showing two URLs:

 First URL

 Second URL

 </body>

Header line for
the cookie
IMPLEMENTING SESSION SUPPORT 133

 </html>

Licensed to Tricia Fu <tricia.fu@gmail.com>

The above HTML page is a normal HTML page without any special code. However, if
the cookies are disabled, the session ID will not be sent when the user clicks on the
hyperlink displayed by this page. Now, let’s see the same HTML code but with the
URLs rewritten to include the session ID:

 <html>
 <head></head>
 <body>
 A test page showing two URLs:

 <a href=
 "/servlet/ReportServlet;jsessionid=C084B32241B2F8F060230440C0158114">
 View Report

 <a href=
 "/servlet/AccountServlet;jsessionid=C084B32241B2F8F060230440C0158114">
 View Account

 </body>
 </html>

When the user clicks on the URLs displayed by the above page, the session ID will be
sent as a part of the request line. We do not need cookies to do this. Although it is quite
easy to attach the session ID with all the URLs, unlike cookies, it is not transparent to
the servlet developer. The HttpServletResponse interface provides two methods
for this purpose, as shown in table 8.8.

Both methods first check to see if attaching the session ID is necessary. If the request
contains a cookie header line, then cookies are enabled and the method need not
rewrite the URL. In this case, the URL is returned without the session ID attached to it.

NOTE Observe that jsessionid is appended to the URL using a ; and not a ?.
This is because jsessionid is a part of the path info of the request URI.
It is not a request parameter and thus cannot be retrieved using the get-
Parameter("jsessionid") method of ServletRequest.

Listing 8.8 illustrates how these methods can be used. HomeServlet generates the
HTML page shown earlier.

Table 8.8 HttpServletResponse methods for appending session IDs to the URLs

Method Description

String
encodeURL(String url)

This method returns the URL with the session ID
attached. It is used for normal URLs emitted by a servlet.

String
encodeRedirectURL(String url)

This method returns the URL with the session ID attached.
It is used for encoding a URL that is to be used for the
HttpServletResponse.sendRedirect() method.
134 CHAPTER 8 SESSION MANAGEMENT

Licensed to Tricia Fu <tricia.fu@gmail.com>

import javax.servlet.*;
import javax.servlet.http.*;

public class HomeServlet extends HttpServlet
{
 public void doGet(HttpServletRequest req,
 HttpServletResponse res)
 {
 HttpSession s = req.getSession();
 PrintWriter pw = res.getWriter();
 pw.println("<html>");
 pw.println("<head></head>");

 pw.println("<body>");
 pw.println("A test page showing two URLs:
");
 pw.println("<a href=\""
 + res.encodeURL("/servlet/ReportServlet")
 + "\">View Report
");
 pw.println("<a href=\""
 + res.encodeURL("/servlet/AccountServlet")
 +"\">View Account
");
 pw.println("</body>");
 pw.println("</html>");
 }
}

Observe that the process of retrieving the session in the servlet remains the same. We
can still safely call the getSession() methods to retrieve the session. The servlet
container transparently parses the session ID attached to the requested URL and
returns the appropriate session object.

In general, URL rewriting is a very robust way to support sessions. We should use
this approach whenever we are uncertain about cookie support. However, it is impor-
tant to keep the following points in mind:

• We should encode all the URLs, including all the hyperlinks and action
attributes of the forms, in all the pages of the application.

• All the pages of the application should be dynamic. Because different users will
have different session IDs, there is no way to attach proper session IDs to the
URLs present in static HTML pages.

• All the static HTML pages must be run through a servlet, which would rewrite
the URLs while sending the pages to the client. Obviously, this can be a serious
performance bottleneck.

Listing 8.8 Using URL rewriting to implement session support

Gets the session

Appends the
session ID
IMPLEMENTING SESSION SUPPORT 135

Licensed to Tricia Fu <tricia.fu@gmail.com>

Quizlet
Q: You have developed your web application assuming that your clients

support cookies. However, after deploying the application, you realize
that most of your clients have disabled cookies. What will be the impact
on your application? How can you fix it?

A: The impact will be drastic. The application will not be able to maintain
the user’s state. The servlet container will create a new session for each
request from each user. The only way to fix this problem is to modify
your servlet code to incorporate URL rewriting.

8.5 SUMMARY

A web application needs to impose state upon the inherently stateless HTTP protocol in
order to keep track of a client’s interactions with the server. This is done through session
management using the HttpSession object. A session is a complete series of inter-
actions between a client and the server; during a session, the server “remembers” the cli-
ent and associates all the requests from that client with the client’s unique session object.

We use listener interfaces to receive notifications when important events take place
in the session and to initiate appropriate actions. These events include changes to the
session attribute list and creating and destroying the session.

The server implements a session by assigning a unique identifier to it. Using either
cookies or URL rewriting, this session ID is sent to the client in the response and
returned to the server with each subsequent request. The session ends either when it
times out or when the session is invalidated. The “session timeout” period is config-
urable through the deployment descriptor. This affects the timeout period of all the
sessions. To change the timeout of a specific session, we can use HttpSes-
sion.setMaxInactiveInterval(int seconds) method.

At this point, you should be able to answer exam questions based on the semantics
of HttpSession and the interfaces that are used to listen for changes in an Http-
Session. You should also be able to answer questions based on session management
using cookies and URL rewriting.

In the next chapter, we will look at another topic that is important from the per-
spective of the exam: security.

8.6 REVIEW QUESTIONS

1. Which of the following interfaces or classes is used to retrieve the session associ-
ated with a user? (Select one)

a GenericServlet

b ServletConfig

c ServletContext
136 CHAPTER 8 SESSION MANAGEMENT

d HttpServlet

Licensed to Tricia Fu <tricia.fu@gmail.com>

e HttpServletRequest

f HttpServletResponse

2. Which of the following code snippets, when inserted in the doGet() method,
will correctly count the number of GET requests made by a user? (Select one)

a HttpSession session = request.getSession();

int count = session.getAttribute("count");

session.setAttribute("count", count++);

b HttpSession session = request.getSession();

int count = (int) session.getAttribute("count");
session.setAttribute("count", count++);

c HttpSession session = request.getSession();

int count = ((Integer) session.getAttribute("count")).intValue();
session.setAttribute("count", count++);

d HttpSession session = request.getSession();

int count = ((Integer) session.getAttribute("count")).intValue();
session.setAttribute("count", new Integer(++count));

3. Which of the following methods will be invoked on a session attribute that
implements HttpSessionBindingListener when the session is invali-
dated? (Select one)

a sessionDestroyed

b valueUnbound

c attributeRemoved

d sessionInvalidated

4. Which of the following methods will be invoked on a session attribute that
implements appropriate interfaces when the session is invalidated? (Select one)

a sessionDestroyed of HttpSessionListener
b attributeRemoved of HttpSessionAttributeListener
c valueUnbound of HttpSessionBindingListener
d sessionWillPassivate of HttpSessionActivationListener

5. Which of the following methods will expunge a session object? (Select one)

a session.invalidate();

b session.expunge();

c session.destroy();

d session.end();

e session.close();

6. Which of the following method calls will ensure that a session will never be
expunged by the servlet container? (Select one)

a session.setTimeout(0);
REVIEW QUESTIONS 137

b session.setTimeout(-1);

Licensed to Tricia Fu <tricia.fu@gmail.com>

c session.setTimeout(Integer.MAX_VALUE);

d session.setTimeout(Integer.MIN_VALUE);

e None of these

7. How can you make sure that none of the sessions associated with a web applica-
tion will ever be expunged by the servlet container? (Select one)

a session.setMaxInactiveInterval(-1);

b Set the session timeout in the deployment descriptor to –1.
c Set the session timeout in the deployment descriptor to 0 or -1.
d Set the session timeout in the deployment descriptor to 65535.
e You have to change the timeout value of all the sessions explicitly as soon as

they are created.

8. In which of the following situations will a session be invalidated? (Select two)

a No request is received from the client for longer than the session timeout
period.

b The client sends a KILL_SESSION request.
c The servlet container decides to invalidate a session due to overload.
d The servlet explicitly invalidates the session.
e A user closes the active browser window.
f A user closes all of the browser windows.

9. Which method is required for using the URL rewriting mechanism of
implementing session support? (Select one)

a HttpServletRequest.encodeURL()

b HttpServletRequest.rewriteURL()

c HttpServletResponse.encodeURL()

d HttpServletResponse.rewriteURL()

10. The users of your web application do not accept cookies. Which of the follow-
ing statements are correct? (Select one)

a You cannot maintain client state.
b URLs displayed by static HTML pages may not work properly.
c You cannot use URL rewriting.
d You cannot set session timeout explicitly.
138 CHAPTER 8 SESSION MANAGEMENT

Licensed to Tricia Fu <tricia.fu@gmail.com>

C H A P T E R 9

Developing secure
web applications

9.1 Basic concepts 140
9.2 Understanding authentication

mechanisms 142
9.3 Securing web applications

9.4 Securing web applications
programmatically 156

9.5 Summary 158
9.6 Review questions 159
declaratively 149

EXAM OBJECTIVES

 5.1 Based on the servlet specification, compare and contrast the following security
mechanisms:
• authentication,
• authorization,
• data integrity, and
• confidentiality.

(Section 9.2)

 5.2 In the deployment descriptor, declare
• A security constraint,
• A Web resource,
• The transport guarantee,
• The login configuration, and
• A security role.
139

(Sections 9.2 and 9.3)

Licensed to Tricia Fu <tricia.fu@gmail.com>

 5.3 Compare and contrast the authentication types (BASIC, DIGEST, FORM, and
CLIENT-CERT); describe how the type works; and given a scenario, select an appro-
priate type.
(Section 9.2)

INTRODUCTION

The utilization of the Internet as an essential business tool continues to grow, as more
and more companies are web-enabling their operations. It is increasingly common for
all types of business dealings to take place over the Internet. Currently, millions of people
transmit personal information over the Internet as they shop at online stores. Many
business transactions, such as banking, stock trading, and so forth, are conducted online
each day. To support these applications, we need a robust security mechanism in place.
It is not an overstatement to say that e-commerce is not possible without security.

In this chapter, we will learn about the various techniques that are used to make
a web application secure.

9.1 BASIC CONCEPTS

The importance of web security will continue to increase as companies and individu-
als alike are paying more attention to ensuring that their resources are protected and
their interactions are private. The Servlet specification provides methods and guide-
lines for implementing security in web applications, but before we go into the details
of implementing those security features, let’s look at some terms you need to know
for the exam.

9.1.1 Authentication

The first fundamental requirement of security is to authenticate the user. Authentica-
tion is the process of identifying a person—or even a system, such as an application—
and validating their credentials. It means verifying that the user is who she (or it)
claims to be. For example, a traveler must show a passport before boarding a flight.
This ID authenticates the traveler; it provides his credentials. In the Internet world, the
basic credentials that authenticate a user are typically a username and a password.

9.1.2 Authorization

Once the user has been authenticated, she must be authorized. Authorization is the
process of determining whether a user is permitted to access a particular resource that
she has requested. For example, you will not be permitted to access a bank account that
does not belong to you, even if you are a member of the bank. In short, you are not
authorized to access anyone else’s account. Authorization is usually enforced by main-
taining an access control list (ACL); this list specifies the users and the types of access
they have to resources.
140 CHAPTER 9 DEVELOPING SECURE WEB APPLICATIONS

Licensed to Tricia Fu <tricia.fu@gmail.com>

9.1.3 Data integrity

Data integrity is the process of ensuring that the data is not tampered with while in
transit from the sender to the receiver. For example, if you send a request to transfer
$1000 from your account to another account, the bank should get a transfer request
for $1000 and not $10,000. Data integrity is usually ensured by sending a hashcode
or signature of the data along with the data. At the receiving end, the data and its hash-
code are verified.

9.1.4 Confidentiality or data privacy

Confidentiality is the process of ensuring that no one except the intended user is able
to access sensitive information. For example, sometimes when you send your user ID/
password to log onto a web site, the information travels in plain text across the Inter-
net. It is possible for hackers to access this information by sniffing the HTTP packets.
In this case, the data is not confidential. Confidentiality is usually ensured by encrypt-
ing the information so that only the intended user can decrypt it. Today, most web
sites use the HTTPS protocol to encrypt messages so that even if a hacker sniffs the
data, he will not be able to decrypt it and hence cannot use it.

The difference between authorization and confidentiality is in the way the
information is protected. Authorization prevents the information from reaching unin-
tended parties in the first place, while confidentiality ensures that even if the infor-
mation falls into the wrong hands, it remains unusable.

9.1.5 Auditing

Auditing is the process of recording security-related events taking place in the system
in order to be able to hold users accountable for their actions. Auditing can help deter-
mine the cause of a breach, and is usually accomplished by maintaining the log files
generated by the application.

9.1.6 Malicious code

A piece of code that is meant to cause harm to computer systems is called malicious
code. This includes viruses, worms, and Trojan horses. Besides the threat from the
outside, sometimes in-house developers leave a back door open into the software that
they write, which provides a potential opportunity for misuse. Although we cannot
prevent unknown programmers from writing malicious code, companies can defi-
nitely prevent malicious code from being written in-house by conducting peer-to-
peer code reviews.

9.1.7 Web site attacks

Anything that is deemed valuable is a potential target for attacks and should be pro-
tected. Web sites are no exception. Their value lies in the information they contain or
the services they provide to legitimate users. A web site may be attacked by different peo-
BASIC CONCEPTS 141

ple for different reasons. For example, a hacker may attack for pleasure, a terminated

Licensed to Tricia Fu <tricia.fu@gmail.com>

employee may attack for revenge, or a professional thief may attack for the purpose of
stealing credit card numbers.

Broadly, there are three types of web site attacks:

• Secrecy attacks—Attempts to steal confidential information by sniffing the com-
munications between two machines. Encrypting the data being transmitted can
prevent such attacks. For example, it is a universal standard that financial insti-
tutions use HTTPS in online banking, stock trading, and so forth.

• Integrity attacks—Attempts to alter information in transit with malicious intent.
If these attempts succeed, it will compromise the data integrity. IP spoofing is
one of the common techniques used in integrity attacks. In this technique, the
intruder sends messages to a server with an IP address indicating that the mes-
sage is coming from a trusted machine. The server is thus fooled into giving
access to the intruder. Such attacks can be prevented by using strong authentica-
tion techniques, such as public-key cryptography.

• Denial-of-service attacks (or availability attacks)—Attempts to flood a system
with fake requests so that the system remains unavailable for legitimate requests.
Creating network congestion by sending spurious data packets also comes
under this category. Such attacks can be prevented by using firewalls that block
network traffic on unintended ports.

Quizlet
Q: The process of showing your ID card to the security guard before enter-

ing a building is known as what?
A: Authentication as well as authorization. When you show the ID card, the

security guard makes sure that you are indeed who you claim to be, pos-
sibly by looking at you and then the photograph on the ID card. This is
authentication. Next, the guard makes sure you are allowed to go into
the building, probably by verifying that your name appears on a list of
approved individuals. This is authorization.

9.2 UNDERSTANDING
AUTHENTICATION MECHANISMS

Now that you understand the basic terms regarding security in web applications, let’s
take a closer look at how authentication is implemented in Java servlets. The Servlet
specification defines four mechanisms to authenticate users:

• HTTP Basic authentication

• HTTP Digest authentication

• HTTPS Client authentication
142 CHAPTER 9 DEVELOPING SECURE WEB APPLICATIONS

• HTTP FORM-based authentication

Licensed to Tricia Fu <tricia.fu@gmail.com>

For the purpose of the exam, you will need to understand the basic features of each of
these authentication mechanisms. They are all based on the username/password mech-
anism, in which the server maintains a list of all the usernames and passwords as well
as a list of resources that have to be protected.

9.2.1 HTTP Basic authentication

HTTP Basic authentication, which is defined in the HTTP 1.1 specification, is the sim-
plest and most commonly used mechanism to protect resources. When a browser
requests any of the protected resources, the server asks for a username/password. If the
user enters a valid username/password, the server sends the resource. Let’s take a closer
look at the sequence of the events:

1 A browser sends a request for a protected resource. At this time, the browser
does not know that the resource is protected, so it sends a normal HTTP
request. For example:

 GET /servlet/SalesServlet HTTP/1.1

2 The server observes that the resource is protected, and so instead of sending the
resource, it sends a 401 Unauthorized message back to the client. In the
message, it also includes a header that tells the browser that the Basic authenti-
cation is needed to access the resource. The header also specifies the context in
which the authentication would be valid. This context is called realm. It helps
organize the access control lists on the server into different categories and, at the
same time, tells users which user ID/password to use if they are allowed access in
different realms. The following is a sample response sent by a server:

 HTTP/1.1 401 Unauthorized
 Server: Tomcat/5.0.25
 WWW-Authenticate: Basic realm="sales"
 Content-Length=500
 Content-Type=text/html

 <html>
 …detailed message
 </html>

In the above response message, the WWW-Authenticate header specifies
Basic and sales as the authentication type and the realm, respectively.

3 Upon receiving the above response, the browser opens a dialog box prompting
for a username and password (see figure 9.1).

4 Once the user enters the username and password, the browser resends the
request and passes the values in a header named Authorization:

 GET /servlet/SalesServlet HTTP/1.1
 Authorization: Basic am9objpqamo=

Specifies authentication
type and realm

Sends the Base64
UNDERSTANDING AUTHENTICATION MECHANISMS 143

encoded value

Licensed to Tricia Fu <tricia.fu@gmail.com>

The above request header includes the Base64 encoded value of the user-
name:password string. The string, am9objpqamo=, is the encoded form
of john:jjj.

5 When the server receives the request, it validates the username and the pass-
word. If they are valid, it sends the resource; otherwise, it sends the same 401
Unauthorized message again.

6 The browser displays the resource (or displays the username/password dialog
box again).

Advantages

The advantages of HTTP Basic authentication are

• It is very easy to set up.

• All browsers support it.

Disadvantages

The disadvantages of HTTP Basic authentication are

• It is not secure because the username/password are not encrypted.

• You cannot customize the look and feel of the dialog box.

Figure 9.1 HTTP Basic authentication
144 CHAPTER 9 DEVELOPING SECURE WEB APPLICATIONS

Licensed to Tricia Fu <tricia.fu@gmail.com>

NOTE Base64 encoding is not an encryption method. Sun provides sun.
misc.Base64Encoder and sun.misc.Base64Decoder classes that
can encode and decode any string using this method. For more infor-
mation, please refer to RFC 1521.

We will see how to use HTTP Basic authentication in section 9.2.5.

9.2.2 HTTP Digest authentication

The HTTP Digest authentication is the same as Basic except that in this case, the pass-
word1 is sent in an encrypted format. This makes it more secure.

Advantage

The advantage of HTTP Digest authentication is

• It is more secure than Basic authentication.

Disadvantages

The disadvantages of HTTP Digest authentication are

• It is supported only by Microsoft Internet Explorer 5.

• It is not supported by many servlet containers since the specification does not
mandate it.

9.2.3 HTTPS Client authentication

HTTPS is HTTP over SSL (Secure Socket Layer). SSL is a protocol developed by
Netscape to ensure the privacy of sensitive data transmitted over the Internet. In this
mechanism, authentication is performed when the SSL connection is established
between the browser and the server. All the data is transmitted in the encrypted form
using public-key cryptography, which is handled by the browser and the servlet con-
tainer in a manner that is transparent to the servlet developers. The exam doesn’t
require you to know the details of this mechanism.

Advantages

The advantages of HTTPS Client authentication are

• It is the most secure of the four types.

• All the commonly used browsers support it.

1 Actually, instead of the password, an MD5 digest of the password is sent. Please refer to RFC 1321 for
UNDERSTANDING AUTHENTICATION MECHANISMS 145

more information.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Disadvantages

The disadvantages of HTTPS Client authentication are

• It requires a certificate from a certification authority, such as VeriSign.

• It is costly to implement and maintain.

9.2.4 FORM-based authentication

This mechanism is similar to Basic authentication. However, instead of using the
browser’s pop-up dialog box, it uses an HTML FORM to capture the username and
password. Developers must create the HTML page containing the FORM, which
allows them to customize its look and feel. The only requirement of the FORM is that
its action attribute should be j_security_check and it must have two fields:
j_username and j_password. Everything else is customizable.

Advantages

The advantages of FORM-based authentication are

• It is very easy to set up.

• All the browsers support it.

• You can customize the look and feel of the login screen.

Disadvantages

The disadvantages of FORM-based authentication are

• It is not secure, since the username/password are not encrypted.

• It should be used only when a session is maintained using cookies or HTTPS.

We will see how to use FORM-based authentication in the next section.

9.2.5 Defining authentication mechanisms

for web applications

To ensure portability and ease of configuration at the deployment location, the authen-
tication mechanism is defined in the deployment descriptor (web.xml) of the web
application. However, before specifying which users should be authenticated, we have
to configure their usernames and passwords. This step depends on the servlet con-
tainer vendor. For Tomcat, it is quite easy.

Configuring users in Tomcat

Tomcat defines all the users in <tomcat-root>\conf\tomcat-users.xml.
The following code snippet shows the default contents of this file:

 <tomcat-users>
 <user name="tomcat" password="tomcat" roles="tomcat" />
146 CHAPTER 9 DEVELOPING SECURE WEB APPLICATIONS

 <user name="role1" password="tomcat" roles="role1" />

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <user name="both" password="tomcat" roles="tomcat,role1" />
 </tomcat-users>

This code defines three usernames: tomcat, role1, and both. The password is
tomcat for all users.

An interesting piece of information in this file is the roles attribute. This
attribute specifies the roles that the user plays. Permissions are assigned to roles instead
of actual users. The concept of role comes straight from the real world; for example,
a company may permit only a sales manager to access the sales data. It does not matter
who the sales manager is. In fact, the sales manager may change over time. At any time,
the sales manager is actually a user playing the sales manager role. Assigning permis-
sions to roles instead of users gives us the flexibility to transfer permissions easily.

Let us add three more entries to the tomcat-users.xml file:

 <tomcat-users>
 <user name="tomcat" password="tomcat" roles="tomcat" />
 <user name="role1" password="tomcat" roles="role1" />
 <user name="both" password="tomcat" roles="tomcat,role1" />

 <user name="john" password="jjj" roles="employee" />
 <user name="mary" password="mmm" roles="employee" />
 <user name="bob" password="bbb" roles="employee, supervisor" />
 </tomcat-users>

We have added john and mary as employees and bob as a supervisor. Because a
supervisor is also an employee, we have specified both roles for bob. We will employ
these usernames later in the chapter.

Specifying the authentication mechanism

The authentication mechanism is specified in the deployment descriptor of the web
application using the <login-config> element. The Servlet specification defines
the <login-config> element as follows:

 <!ELEMENT login-config (auth-method?, realm-name?, form-login-config?)>

Let’s look at the subelements:

• <auth-method>. Specifies which of the four authentication methods should
be used to validate the user: BASIC, DIGEST, CLIENT-CERT, or FORM.

• <realm-name>. Specifies the realm name to be used in HTTP Basic autho-
rization only.

• <form-login-config>. Specifies the login page URL and the error page URL.
This element is used only if auth-method is FORM; otherwise, it is ignored.

The following is a web.xml code snippet that shows an authentication mecha-
UNDERSTANDING AUTHENTICATION MECHANISMS 147

nism configuration:

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <web-app>
 ...
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>sales</realm-name>
 </login-config>
 ...
 <web-app>

The above code uses the Basic mechanism to authenticate users. If we wanted to use
the FORM mechanism, we’d need to write two HTML pages: one for capturing the
username and password, and another to display an error message if the login fails.
Finally, we’d need to specify these HTML files in the <form-login-config> ele-
ment, as shown here:

 <web-app>
 ...
 <login-config>
 <auth-method>FORM</auth-method>
 <!--realm-name not required for FORM based authentication -->
 <form-login-config>
 <form-login-page>/formlogin.html</form-login-page>
 <form-error-page>/formerror.html</form-error-page>
 </form-login-config>
 </login-config>
 ...
 <web-app>

The formlogin.html file can be as simple as the following:

 <html>
 <body>
 <h4>Please login:</h4>
 <form method="POST" action="j_security_check">
 <input type="text" name="j_username">
 <input type="password" name="j_password">
 <input type="submit" value="OK">
 </form>
 </body>
 </html>

The formerror.html file is even simpler:

 <html>
 <body>
 <h4>Sorry, your username and password do not match.</h4>
 </body>
 </html>

Observe that for the FORM method, we do not have to write any servlet to process the
form. The action j_security_check triggers the servlet container to do the pro-
148 CHAPTER 9 DEVELOPING SECURE WEB APPLICATIONS

cessing itself.

Licensed to Tricia Fu <tricia.fu@gmail.com>

9.3 SECURING WEB APPLICATIONS DECLARATIVELY

It is very common for a web application to be developed by one group of individuals
and then deployed by a very different group of people at another location. For exam-
ple, many companies sell web applications as ready-made solutions for business needs.
This means that the developer should be able to easily convey the security require-
ments of the application to the deployer. The deployer should also be able to customize
certain aspects of the application’s security without modifying the code. The servlet
framework allows us to specify the detailed security requirements of the application in
the deployment descriptor. This is called declarative security.

By default, all of the resources of a web application are accessible to everybody. To
restrict access to the resources, we need to identify three things:

• Web resource collection—Identifies the resources of the application (that is,
HTML files, servlets, and so forth) that must be protected from public access. A
user must have appropriate authorization to access resources identified under a
web resource collection.

• Authorization constraint—Identifies the roles that a user can be assigned. Instead
of specifying permissions for individual users, permissions are assigned to roles.
As discussed earlier, this reduces a tight coupling of permissions and the actual
users. For example, an AdminServlet may be accessible to any user who is in
the administrator role. At deployment time, any of the actual users may be con-
figured as the administrator.

• User data constraint—Specifies the way the data must be transmitted between
the sender and the receiver. In other words, this constraint specifies the trans-
port layer requirement of the application. It formulates the policies for main-
taining data integrity and confidentiality. For example, an application may
require the use of HTTPS as a means of communication instead of plain HTTP.

We can configure all three of these items in the deployment descriptor of the web
application by using the element <security-constraint>. This element, which
falls directly under the <web-app> element of web.xml, is defined as follows:

 <!ELEMENT security-constraint (display-name?, web-resource-collection+,
 auth-constraint?, user-data-constraint?)>

Let’s look at the subelements one by one.

9.3.1 display-name

This is an optional element. It specifies a name for the security constraint that is
easily identifiable.

9.3.2 web-resource-collection

As the name suggests, web-resource-collection specifies a collection of
SECURING WEB APPLICATIONS DECLARATIVELY 149

resources to which this security constraint applies. We can define one or more

Licensed to Tricia Fu <tricia.fu@gmail.com>

web resource collections in the <security-constraint> element. It is defined
as follows:

<!ELEMENT web-resource-collection (web-resource-name, description?,
 url-pattern*, http-method*)>

• web-resource-name—Specifies the name of the resource.

• description—Provides a description of the resource.

• url-pattern—Specifies the URL pattern through which the resource will be
accessed. We can specify multiple URL patterns to group multiple resources
together. Recall from chapter 5, “Structure and deployment,” that <url-
pattern> is also used to specify the URL-to-servlet mapping.

• http-method—Provides a finer control over HTTP requests. This element
specifies the HTTP methods to which this constraint will be applied. For exam-
ple, we can use http-method to restrict POST requests only to authorized
users while allowing GET requests for all the users.

Let’s look at a sample web resource collection:

 <web-app>
 ...
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>reports</web-resource-name>

 <url-pattern>/servlet/SalesReportServlet/*</url-pattern>
 <url-pattern>/servlet/FinanceReportServlet/*</url-pattern>
 <url-pattern>/servlet/HRReportServlet/*</url-pattern>

 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 ...
 </security-constraint>
 ...
 </web-app>

In this collection, we specify three servlets to which we want to apply the security con-
straint. We have defined only GET and POST in the <http-method> section. This
means that only these methods will have a restricted access; all other requests to these
servlets will be open to all users.

If no <http-method> element is present, then the constraint applies to all of the
HTTP methods.

9.3.3 auth-constraint

This element specifies the roles that can access the resources specified in the web-
resource-collection section. It is defined as follows:

Defines a web
resource collection
150 CHAPTER 9 DEVELOPING SECURE WEB APPLICATIONS

<!ELEMENT auth-constraint (description?, role-name*)>

Licensed to Tricia Fu <tricia.fu@gmail.com>

• description—Describes the constraint.

• role-name—Specifies the role that can access the resources. It can be * (which
means all the roles defined in the web application), or it must be a name that is
defined in the <security-role> element of the deployment descriptor.

Here’s an example:

 <web-app>
 ...
 <security-role>
 <role-name>supervisor</role-name>
 </security-role>
 <security-role>
 <role-name>director</role-name>
 </security-role>
 <security-role>
 <role-name>employee</role-name>
 </security-role>
 ...
 <security-constraint>
 ...
 <auth-constraint>
 <description>accessible to all supervisors and
 directors</description>
 <role-name>supervisor</role-name>
 <role-name>director/role-name>
 </auth-constraint>
 ...
 </security-constraint>
 ...
 </web-app>

This example specifies that the security constraint applies to all the users who are in
the role of supervisor or director.

9.3.4 user-data-constraint

This element specifies how the data should be communicated between the client and
the server. It is defined as follows:

 <!ELEMENT user-data-constraint (description?, transport-guarantee)>

• description—Describes the constraint.

• transport-guarantee—Contains one of three values: NONE, INTEGRAL,
or CONFIDENTIAL. NONE implies that the application does not need any guar-
antee about the integrity or confidentiality of the data transmitted, while INTE-
GRAL and CONFIDENTIAL imply that the application requires the data
transmission to have data integrity and confidentiality, respectively. Usually, plain
HTTP is used when transport-guarantee is set to NONE, and HTTPS is
SECURING WEB APPLICATIONS DECLARATIVELY 151

used when transport-guarantee is set to INTEGRAL or CONFIDENTIAL.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Here is an example of user-data-constraint:

 <web-app>
 ...
 <security-constraint>
 ...
 <user-data-constraint>
 <description>requires the data transmission
 to be integral</description>
 <transport-guarantee>INTEGRAL</transport-guarantee>
 </user-data-constraint>
 ...
 </security-constraint>
 ...
 </web-app>

9.3.5 Putting it all together

Now, let’s build a simple web application containing just one servlet but with all of the
bells and whistles for its security. As you work through the examples in this section, it’s
a good idea to restart Tomcat and to use a new browser window whenever you make
changes to the code or configuration of the sample application.

The deployment descriptor

As we explained earlier, all of the security requirements of a web application can be
specified in the deployment descriptor, as illustrated in listing 9.1.

<?xml version="1.1" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>

 <servlet>
 <servlet-name>SecureServlet</servlet-name>
 <servlet-class>SecureServlet</servlet-class>
 </servlet>

<servlet-mapping>

 <servlet-name>SecureServlet</servlet-name>

 <url-pattern>/secure</url-pattern>

</servlet-mapping>

 <security-constraint>

 <web-resource-collection>
 <web-resource-name>declarative security test</web-resource-name>

Listing 9.1 web.xml showing declarative security configuration

Defines a servlet

Defines the security
constraint for the servlet
152 CHAPTER 9 DEVELOPING SECURE WEB APPLICATIONS

 <url-pattern>/secure</url-pattern>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <http-method>POST</http-method>
 </web-resource-collection>

 <auth-constraint>
 <role-name>supervisor</role-name>
 </auth-constraint>

 <user-data-constraint>
 <transport-guarantee>NONE</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

 <login-config>
 <auth-method>FORM</auth-method>

 <form-login-config>
 <form-login-page>/formlogin.html</form-login-page>
 <form-error-page>/formerror.html</form-error-page>
 </form-login-config>
 </login-config>

 <security-role>
 <role-name>supervisor</role-name>
 </security-role>

</web-app>

The web.xml file for our web application (listing 9.1) is straightforward. It defines a
servlet followed by a security constraint for the servlet.

The resource to be protected is identified by the <url-pattern> element of
<web-resource-collection>. Observe that in the <web-resource-
collection> section we have specified only the POST method; this means that this
security constraint applies only to the POST requests. All other HTTP methods are
accessible to all the users. We could say that the word resource in web-
resource-collection is a misnomer. With respect to a web-resource-
collection, a resource is not just a servlet or a JSP page—it is an HTTP method
sent to that servlet. In listing 9.1, the resource to which we are applying the constraint
is the POST method sent to SecureServlet.

The auth-constraint section specifies that this resource should only be
accessible to supervisors. The role-name that we use here must be defined in the
security-role section.

The transport-guarantee is NONE, implying that HTTP will be used as the
communication protocol.

The <login-config> section is exactly as we discussed in section 9.2.5. We can
use either BASIC or FORM as the authentication mechanism.

Defines the authentication mechanism

Defines the
security role
SECURING WEB APPLICATIONS DECLARATIVELY 153

Licensed to Tricia Fu <tricia.fu@gmail.com>

The SecureServlet

Listing 9.2 contains the code for the SecureServlet, which was specified in the
<servlet-name> element in the deployment descriptor in listing 9.1.

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class SecureServlet extends HttpServlet
{

 public void doGet(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException
 {
 PrintWriter pw = res.getWriter();

 pw.println("<html><head>");
 pw.println("<title>Declarative Security Example</title>");
 pw.println("</head>");
 pw.println("<body>");
 pw.println("Hello! HTTP GET request is open to all
 users.");
 pw.println("</body></html>");

 }

 public void doPost(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException
 {

 PrintWriter pw = res.getWriter();

 pw.println("<html><head>");
 pw.println("<title>Declarative Security Example</title>");
 pw.println("</head>");
 pw.println("<body>");
 String name = req.getParameter("username");
 pw.println("Welcome, "+name+"!");
 pw.println("
You are seeing this page because you are
 a supervisor.");
 pw.println("</body></html>");

 }

}

The servlet code in listing 9.2 is fairly simple and self-explanatory. We implemented

Listing 9.2 Code for SecureServlet
154 CHAPTER 9 DEVELOPING SECURE WEB APPLICATIONS

the doGet() and doPost() methods for demonstration purposes only.

Licensed to Tricia Fu <tricia.fu@gmail.com>

An important point to observe here is that the servlet does not have any security-
related code. All of the security aspects are taken care of by the servlet container with
the help of the deployment descriptor.

Running the example

You can access the complete working code from the Manning web site. Simply copy
the chapter09-declarative directory to the webapps directory of your Tom-
cat installation and restart Tomcat.

• From your browser, go to http://localhost:8080/chapter09-
declarative/secure. This sends a GET request to the servlet. Note that
you are not asked for a username or password.

• To see the behavior of the POST method, go to http://localhost:8080/
chapter09-declarative/posttest.html. This HTML file contains a
FORM, which sends a POST request to the servlet. Observe that this time you
get the login page (formlogin.html) because we have specified POST in
<http-method> in the <web-resource-collection> section of the
deployment descriptor (listing 9.1). The servlet’s doPost()2 method is exe-
cuted only if you enter bob and bbb as the user ID and password, since bob is
the only user we have defined in the tomcat-users.xml with the role of super-
visor. For other values, you will get the error page (formerror.html). The
code for posttest.html is simple and contains the following six lines:

 <html><body>
 <form action="/chapter09-declarative/secure" method="POST">
 Name: <input type="text" name="username">
 <input type="submit">
 </form>
 </body></html>

The combination of FORM-based authentication and POST works well in other
containers.

2 Unfortunately, Tomcat 5 incorrectly handles the combination of FORM-based authentication and
HTTP POST requests for protected resources, and the example application reveals this flaw. Tomcat
authenticates the user as expected but calls the doGet() method on the resource instead of
doPost(). This means the page you see will be the same as that for the unsecured access. In order to
see the correct page, switch the <auth-method> to BASIC and restart Tomcat. Use a new browser
window to access http://localhost:8080/chapter09-declarative/posttest.html. Af-
ter submiting the form, and authenticated with bob and bbb as the user ID and password, you
SECURING WEB APPLICATIONS DECLARATIVELY 155

should see the correct page.

Licensed to Tricia Fu <tricia.fu@gmail.com>

9.4 SECURING WEB APPLICATIONS
PROGRAMMATICALLY

In some cases, declarative security is not sufficient or fine-grained enough for the
application. For example, suppose we want a servlet to be accessed by all employees.
However, we want the server to generate a certain output for directors and a different
output for other employees.

For such cases, the Servlet specification allows the servlet to have security-related
code. This is called programmatic security. In this approach, a servlet identifies the role
that a user is playing and then generates the output according to the role. As shown
in table 9.1, the HttpServletRequest interface provides three methods for iden-
tifying the user and the role.

Let’s modify the SecureServlet that we saw in section 9.3 to generate customized
output. We will just change the doPost() method and leave the rest as is:

 public void doPost(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException
 {
 PrintWriter pw = res.getWriter();

 pw.println("<html><head>");
 pw.println("<title>Programatic Security Example</title>");
 pw.println("</head>");
 pw.println("<body>");

 String username = req.getRemoteUser();

 if(username != null)
 pw.println("<h4>Welcome, "+username+"!</h4>");

 if(req.isUserInRole("director"))
 {
 pw.println("Director's Page!");

Table 9.1 HttpServletRequest methods for identifying a user

Method Description

String getRemoteUser() This method returns the login name of the user, if the user
has been authenticated, or null if the user has not been
authenticated.

Principal getUserPrincipal() This method returns a java.security.Principal
object containing the name of the current authenticated
user. It returns null if the user is not authenticated.

boolean isUserInRole
(String rolename)

This method returns a Boolean indicating whether the
authenticated user is included in the specified logical role. It
returns false if the user is not authenticated.

Gets the username

Determines if the user is a manager
156 CHAPTER 9 DEVELOPING SECURE WEB APPLICATIONS

 }
 else

Licensed to Tricia Fu <tricia.fu@gmail.com>

 {
 pw.println("Employee's Page!");
 }
 pw.println("</body></html>");

 }

In this code, we retrieve the login name of the user using the getRemoteUser()
method and determine whether the user is a director.

Obviously, this requires hard-coding the role name director in the servlet code.
At the actual deployment location, however, users may be called supervisors instead
of directors. To allow flexibility in defining the roles at deployment time, the servlet
developer must convey the hard-coded values to the deployer. The deployer then maps
these hard-coded values to the actual role values that are used in the deployment envi-
ronment (as we’ll see in the example that follows).

Now, let’s modify the deployment descriptor of our previous example. Listing 9.3
contains the new deployment descriptor; the modified part appears in bold.

<?xml version="1.1" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <servlet>
 <servlet-name>SecureServlet</servlet-name>
 <servlet-class>SecureServlet</servlet-class>

 <security-role-ref>

 <role-name>director</role-name>
 <role-link>supervisor</role-link>

 </security-role-ref>

 </servlet>

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>programmatic security test</web-resource-name>
 <url-pattern>/servlet/SecureServlet</url-pattern>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>employee</role-name>

 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>

Listing 9.3 web.xml for programmatic security configuration

Role name hard-coded
in the servlet

Role name defined in
the servlet container

Gives access to all
the employees
SECURING WEB APPLICATIONS PROGRAMMATICALLY 157

 </security-constraint>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>sales</realm-name>
 <form-login-config>
 <form-login-page>/formlogin.html</form-login-page>
 <form-error-page>/formerror.html</form-error-page>
 </form-login-config>
 </login-config>

 <security-role>
 <role-name>supervisor</role-name>
 </security-role>
 <security-role>
 <role-name>employee</role-name>
 </security-role>

</web-app>

In listing 9.3, the <security-role-ref> section is used to associate the hard-
coded role name used by the servlet (director) to the actual role name (supervi-
sor). Since we now want the servlet to be accessed by all employees, we have also
changed the <security-constraint> to let all staff access this servlet. That’s all
there is to the programmatic security model.

9.5 SUMMARY

As companies conduct more of their business over the Internet, security issues will
continue to increase in importance. In this chapter, we learned how to make a web
application secure. We first introduced some important security-related terms.
Authentication is validating who a user is, authorization is verifying what the user can
do, and auditing holds the user accountable for her actions. We also discussed confi-
dentiality and data integrity, and how these terms apply to web applications. The Serv-
let specification defines four mechanisms to authenticate users: BASIC, CLIENT-
CERT, FORM, and DIGEST. The authentication mechanism is defined in the deploy-
ment descriptor (web.xml) of the web application.

We also learned how to secure a web application declaratively by configuring its
security aspects in the deployment descriptor, and we learned how to implement secu-
rity-related code in a servlet in order to secure a web application programmatically.
Finally, we presented a complete web application that uses all the security features pro-
vided by the Servlet specification.

You should now be able to answer questions that require an understanding of autho-
rization, authentication, data integrity, auditing, malicious code, and web site attacks.
You should know how to specify the security requirements of an application in the
deployment descriptor and how to identify incorrectly written security constraints.

In the next chapter, we will learn about multithreaded and single-threaded servlets.
158 CHAPTER 9 DEVELOPING SECURE WEB APPLICATIONS

We’ll also learn how to develop thread-safe servlets.

Licensed to Tricia Fu <tricia.fu@gmail.com>

9.6 REVIEW QUESTIONS

1. Which of the following correctly defines data integrity? (Select one)

a It guarantees that information is accessible only to certain users.
b It guarantees that the information is kept in encrypted form on the server.
c It guarantees that unintended parties cannot read the information during

transmission between the client and the server.
d It guarantees that the information is not altered during transmission between

the client and the server.

2. What is the term for determining whether a user has access to a particular
resource? (Select one)

a Authorization
b Authentication
c Confidentiality
d Secrecy

3. Which one of the following must be done before authorization takes place?
(Select one)

a Data validation
b User authentication
c Data encryption
d Data compression

4. Which of the following actions would you take to prevent your web site from
being attacked? (Select three)

a Block network traffic at all the ports except the HTTP port.
b Audit the usage pattern of your server.
c Audit the Servlet/JSP code.
d Use HTTPS instead of HTTP.
e Design and develop your web application using a software engineering meth-

odology.
f Use design patterns.

5. Identify the authentication mechanisms that are built into the HTTP specifica-
tion. (Select two)

a Basic
b Client-Cert
c FORM
d Digest
e Client-Digest
REVIEW QUESTIONS 159

f HTTPS

Licensed to Tricia Fu <tricia.fu@gmail.com>

6. Which of the following deployment descriptor elements is used for specifying
the authentication mechanism for a web application? (Select one)

a security-constraint

b auth-constraint

c login-config

d web-resource-collection

7. Which of the following elements are used for defining a security constraint?
Choose only those elements that come directly under the security-
constraint element. (Select three)

a login-config

b role-name

c role

d transport-guarantee

e user-data-constraint

f auth-constraint

g authorization-constraint

h web-resource-collection

8. Which of the following web.xml snippets correctly identifies all HTML files
under the sales directory? (Select two)

a <web-resource-collection>

 <web-resource-name>reports</web-resource-name>
 <url-pattern>/sales/*.html</url-pattern>
 </web-resource-collection>

b <resource-collection>

 <web-resource-name>reports</web-resource-name>
 <url-pattern>/sales/*.html</url-pattern>
 </resource-collection>

c <resource-collection>

 <resource-name>reports</resource-name>
 <url-pattern>/sales/*.html</url-pattern>
 </resource-collection>

d <web-resource-collection>

 <web-resource-name>reports</web-resource-name>
 <url-pattern>/sales/*.html</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>

9. You want your PerformanceReportServlet to be accessible only to man-
160 CHAPTER 9 DEVELOPING SECURE WEB APPLICATIONS

agers. This servlet generates a performance report in the doPost() method

Licensed to Tricia Fu <tricia.fu@gmail.com>

based on a FORM submitted by a user. Which of the following correctly defines
a security constraint for this purpose? (Select one)

a <security-constraint>

 <web-resource-collection>
 <web-resource-name>performance report</web-resource-name>
 <url-pattern>/servlet/PerformanceReportServlet</url-pattern>
 <http-method>GET</http-method>

 </web-resource-collection>

 <auth-constraint>

 <role-name>manager</role-name>
 </auth-constraint>

 <user-data-constraint>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>

 </security-constraint>

b <security-constraint>

 <web-resource-collection>
 <web-resource-name>performance report</web-resource-name>
 <url-pattern>/servlet/PerformanceReportServlet</url-pattern>

 <http-method>*</http-method>
 </web-resource-collection>

 <accessibility>
 <role-name>manager</role-name>
 </accessibility>

 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>

 </security-constraint>

c <security-constraint>

 <web-resource-collection>
 <web-resource-name>performance report</web-resource-name>
 <url-pattern>/servlet/PerformanceReportServlet</url-pattern>
 <http-method>POST</http-method>
 </web-resource-collection>

 <accessibility>
 <role-name>manager</role-name>
 </accessibility>

 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
REVIEW QUESTIONS 161

 </security-constraint>

Licensed to Tricia Fu <tricia.fu@gmail.com>

d <security-constraint>

 <web-resource-collection>
 <web-resource-name>performance report</web-resource-name>
 <url-pattern>/servlet/PerformanceReportServlet</url-pattern>
 <http-method>POST</http-method>
 </web-resource-collection>

 <auth-constraint>
 <role-name>manager</role-name>
 </auth-constraint>

 </security-constraint>

10. Which of the following statements regarding authentication mechanisms are
correct? (Select two)

a The HTTP Basic mechanism transmits the username/password “in the
open.”

b The HTTP Basic mechanism uses HTML FORMs to collect usernames/pass-
words.

c The transmission method in the Basic and FORM mechanisms is the same.
d The method of capturing the usernames/passwords in the Basic and FORM

mechanisms is the same.

11. Which of the following statements are correct for an unauthenticated user?
(Select two)

a HttpServletRequest.getUserPrincipal() returns null.
b HttpServletRequest.getUserPrincipal() throws SecurityException.
c HttpServletRequest.isUserInRole(rolename) returns false.
d HttpServletRequest.getRemoteUser() throws a SecurityException.
162 CHAPTER 9 DEVELOPING SECURE WEB APPLICATIONS

Licensed to Tricia Fu <tricia.fu@gmail.com>

3P A R T
JavaServer Pages
and design patterns

In developing web components, we normally use JavaServer Pages (JSPs) for the
presentation. In addition, we use design patterns to provide the theoretical framework
for large-scale applications. In this final part of the book, we’ll cover both topics.
Licensed to Tricia Fu <tricia.fu@gmail.com>

Licensed to Tricia Fu <tricia.fu@gmail.com>

C H A P T E R 1 0

The JSP technology

model—the basics
10.1 SP syntax elements 166
10.2 The JSP page life cycle 173
10.3 Understanding JSP page directive attributes 181
10.4 Summary 186

10.5 Review questions 186

EXAM OBJECTIVES

 6.1 Identify, describe, or write the JSP code for the following expressions:

• Template text;
• Scripting elements (comments, directives, declarations, scriptlets, and expressions);
• Standard and custom actions; and
• Expression language elements.

(Section 10.1)

 6.2 Write JSP code that uses the directive:

• ‘page’ (with attributes ‘import’, ‘session’, ‘contentType’, and ‘isELIgnored’)
• ‘include’, and
• ‘taglib’.

(Section 10.3)

 6.4 Describe the purpose and event sequence of the JSP life cycle:

• JSP page translation
165

• JSP page compilation

Licensed to Tricia Fu <tricia.fu@gmail.com>

• Load class
• Create instance
• Call the jspinit method
• Call the _jspService method
• Call the _jspDestroy method

(Section 10.2)

INTRODUCTION

In the J2EE suite of specifications that includes servlets, JavaServer Pages (JSP), the Java
Naming and Directory Interface (JNDI), Enterprise JavaBeans (EJB), and so forth, the
JSP is a web-tier specification that supplements the Servlet specification and is useful
in the development of web interfaces for enterprise applications. JSP is a technology
that combines the HTML/XML markup languages and elements of the Java program-
ming language to return dynamic content to a web client. For this reason, it is com-
monly used to handle the presentation logic of a web application, although the JSP
pages may also contain business logic.

In this chapter, we will discuss the basic syntax of the JSP scripting language and
the JSP page life cycle. This chapter gives you the basics you need to understand the
JSP technology model and will help you grasp the more complex topics covered in
the next chapter.

10.1 SP SYNTAX ELEMENTS

Just like any other language, the JSP scripting language has a well-defined grammar
and includes syntax elements for performing various tasks, such as declaring variables
and methods, writing expressions, and calling other JSP pages. At the top level, these
syntax elements, also called JSP tags, are classified into six categories. Table 10.1 sum-
marizes the element categories and their basic use.

Table 10.1 JSP element types

JSP tag type Brief description Tag syntax

Directive Specifies translation time instructions to the
JSP engine

<%@ Directives %>

Declaration Declares and defines methods and variables <%! Java Declarations %>

Scriptlet Allows the developer to write free-form Java
code in a JSP page

<% Some Java code %>

Expression Used as a shortcut to print values in the output
HTML of a JSP page

<%= An Expression %>

Action Provides request-time instructions to the JSP
engine

<jsp:actionName />
166 CHAPTER 10 THE JSP TECHNOLOGY MODEL—THE BASICS

Comment Used for documentation and for commenting
out parts of JSP code

<%-- Any Text --%>

Licensed to Tricia Fu <tricia.fu@gmail.com>

The exam objectives covered in this chapter require you to know the syntax and pur-
pose of the first four element types: directives, declarations, scriptlets, and expressions.
We will briefly introduce actions in section 10.1.5, and explain them in detail in chap-
ters 12 and 14. Although you don’t need to be familiar with comments to do well on
the exam, they are very useful when writing JSP pages, and we will discuss them briefly
in section 10.1.6.

Listing 10.1 is a simple JSP page that counts the number of times it is visited. It
demonstrates the use of the different elements, which we will explain in the sections
following the listing.

<html><body>

<%@ page language="java" %>
<%! int count = 0; %>
<% count++; %>

Welcome! You are visitor number
<%= count %>

</body></html>

When this file is accessed for the first time via the URL http://local-
host:8080/chapter10/counter.jsp, it displays the following line in the
browser window:

 Welcome! You are visitor number 1

On subsequent requests, the counter is incremented by 1 before the message is printed.

10.1.1 Directives

Directives provide general information about the JSP page to the JSP engine. There are
three types of directives: page, include, and taglib.

A page directive informs the engine about the overall properties of a JSP page. For
example, the following page directive informs the JSP engine that we will be using
Java as the scripting language in our JSP page:

 <%@ page language="java" %>

An include directive tells the JSP engine to include the contents of another file
(HTML, JSP, etc.) in the current page. Here is an example of an include directive:

 <%@ include file="copyright.html" %>

A taglib directive is used for associating a prefix with a tag library. The following is
an example of a taglib directive:

Listing 10.1 counter.jsp

Directive
Declaration
Scriptlet

Expression
SP SYNTAX ELEMENTS 167

 <%@ taglib prefix="test" uri="taglib.tld" %>

Licensed to Tricia Fu <tricia.fu@gmail.com>

See section 10.3 for details on the page directive. In chapter 12, “Reusable web com-
ponents,” we will take a close look at the include directive. Because the concept of
a tag library is a vast topic in itself, the exam objectives devote two sections to it. We
will learn about the taglib directive in detail in chapter 15, “Using custom tags,”
and learn specific methods of tag development in chapters 16 and 17.

A directive always starts with <%@ and ends with %>. The general syntax of the
three directives is

 <%@ page attribute-list %>
 <%@ include attribute-list %>
 <%@ taglib attribute-list %>

In the sample tags above, attribute-list represents one or more attribute-value
pairs that are specific to the directive. Here are some important points to remember
about the syntax of the directives:

• The tag names, their attributes, and their values are all case sensitive.

• The value must be enclosed within a pair of single or double quotes.

• A pair of single quotes is equivalent to a pair of double quotes.

• There must be no space between the equals sign (=) and the value.

10.1.2 Declarations

Declarations declare and define variables and methods that can be used in the JSP
page.1 The following is an example of a JSP declaration:

 <%! int count = 0; %>

This declares a variable named count and initializes it to 0. The variable is initialized
only once when the page is first loaded by the JSP engine, and retains its value in sub-
sequent client requests. That is why the count variable in listing 10.1 is not reset to
0 each time we access the page.

A declaration always starts with <%! and ends with %>. It can contain any number
of valid Java declaration statements. For example, the following tag declares a variable
and a method in a single tag:

 <%!
 String color[] = {"red", "green", "blue"};

 String getColor(int i)
 {
 return color[i];
 }
 %>

1 Theoretically, a JSP declaration can contain any valid Java declaration including inner classes and static
168 CHAPTER 10 THE JSP TECHNOLOGY MODEL—THE BASICS

code blocks. However, such declarations are rarely used.

Licensed to Tricia Fu <tricia.fu@gmail.com>

We can also write the above two Java declaration statements in two JSP declara-
tion tags:

 <%! String color[] = {"red", "green", "blue"}; %>

 <%!
 String getColor(int i)
 {
 return color[i];
 }
 %>

Note that since the declarations contain Java declaration statements, each variable’s
declaration statement must be terminated with a semicolon.

10.1.3 Scriptlets

Scriptlets are Java code fragments that are embedded in the JSP page. For example, this
line from the counter.jsp example (listing 10.1) is a JSP scriptlet:

 <% count++; %>

The scriptlet is executed each time the page is accessed, and the count variable is
incremented with each request.

Since scriptlets can contain any Java code, they are typically used for embedding
computing logic within a JSP page. However, we can use scriptlets for printing HTML
statements, too. The following is equivalent to the code in listing 10.1:

 <%@ page language="java" %>
 <%! int count = 0; %>

 <%
 out.print("<html><body>");
 count++;
 out.print("Welcome! You are visitor number " + count);
 out.print("</body></html>");
 %>

Instead of writing normal HTML code directly in the page, we are using a scriptlet to
achieve the same effect. The variable out refers to an object of type javax.serv-
let.jsp.JspWriter. We will learn about out in chapter 11, “The JSP technology
model—advanced topics.”

A scriptlet always starts with <% and ends with %>. Note, however, that unlike the
other elements, the opening tag of a scriptlet does not have any special character fol-
lowing <%. The code within the scriptlet must be valid in the Java programming lan-
guage. For example, this is an error because it does not terminate the print statement
with a semicolon:

 <% out.print(count) %>
SP SYNTAX ELEMENTS 169

Licensed to Tricia Fu <tricia.fu@gmail.com>

10.1.4 Expressions

Expressions act as placeholders for Java language expressions. This is an example of a
JSP expression:

 <%= count %>

The expression is evaluated each time the page is accessed, and its value is then embed-
ded in the output HTML. For instance, in the previous counter.jsp example (list-
ing 10.1), instead of incrementing the count variable in a scriptlet, we could have
incremented it in the expression itself:

 <html><body>
 <%@ page language="java" %>
 <%! int count = 0; %>

 Welcome! You are visitor number <%= ++count %>

 </body></html>

A JSP expression always starts with <%= and ends with %>. Unlike variable declara-
tions, expressions must not be terminated with a semicolon. Thus, the following is
not valid:

 <%= count; %>

We can print the value of any object or any primitive data type (int, boolean,
char, etc.) to the output stream using an expression. We can also print the value of
any arithmetic or Boolean expression or a value returned by a method call. The exam
may ask you to identify valid JSP expressions. Tables 10.2 and 10.3 contain some
examples of valid and invalid JSP expressions based on the following declarations:

 <%!
 int anInt = 3;
 boolean aBool = true;
 Integer anIntObj = new Integer(3);
 Float aFloatObj = new Float(12.6);

 String str = "some string";
 StringBuffer sBuff = new StringBuffer();

 char getChar(){ return 'A'; }
 %>

Table 10.2 Valid JSP expressions

Expression Explanation

<%= 500 %> An integral literal

<%= anInt*3.5/100-500 %> An arithmetic expression

<%= aBool %> A Boolean variable

<%= false %> A Boolean literal

Evaluates the expression
and prints it out
170 CHAPTER 10 THE JSP TECHNOLOGY MODEL—THE BASICS

continued on next page

Licensed to Tricia Fu <tricia.fu@gmail.com>

10.1.5 Actions

Actions are commands given to the JSP engine. They direct the engine to perform cer-
tain tasks during the execution of a page. For example, the following line instructs the
engine to include the output of another JSP page, copyright.jsp, in the output of
the current JSP page:

 <jsp:include page="copyright.jsp" />

There are six standard JSP actions:

• jsp:include
• jsp:forward
• jsp:useBean
• jsp:setProperty
• jsp:getProperty

• jsp:plugin

The first two, jsp:include and jsp:forward, enable a JSP page to reuse
other web components. We will discuss these two actions in chapter 12, “Reusable
web components.”

The next three, jsp:useBean, jsp:setProperty, and jsp:getProp-
erty, are related to the use of JavaBeans in JSP pages. We will discuss these three
actions in chapter 14, “Using JavaBeans.”

The last action, jsp:plugin, instructs the JSP engine to generate appropriate
HTML code for embedding client-side components, such as applets. This action is not

<%= !false %> A Boolean expression

<%= getChar() %> A method returning a char

<%= Math.random() %> A method returning a double

<%= aVector %> A variable referring to a Vector object

<%= aFloatObj %> A method returning a float

<%= aFloatObj.floatValue() %> A method returning a float

<%= aFloatObj.toString() %> A method that returns a String object

Table 10.3 Invalid JSP expressions

Expression Explanation

<%= aBool; %> You cannot use a semicolon in an expression.

<%= int i = 20 %> You cannot define anything inside an expression.

<%= sBuff.setLength(12); %> The method does not return any value. The return type is void.

Table 10.2 Valid JSP expressions (continued)

Expression Explanation
SP SYNTAX ELEMENTS 171

specified in the exam objectives, and its details are beyond the scope of this book.

Licensed to Tricia Fu <tricia.fu@gmail.com>

In addition to the six standard actions, a JSP page can have user-defined actions.
These are called custom tags. We will learn about custom tags in chapters 15 (“Using
custom tags”), 16 (“Developing classic custom tag libraries”), and 17 (“Developing
simple custom tag libraries”).

The general syntax of a JSP action is

 <jsp:actionName attribute-list />

In this tag, actionName is one of the six actions mentioned and attribute-list
represents one or more attribute-value pairs that are specific to the action. As with
directives, you should keep in mind these points:

• The action names, their attributes, and their values are case sensitive.

• The value must be enclosed within a pair of single or double quotes.

• A pair of single quotes is equivalent to a pair of double quotes.

• There must be no space between the equals sign (=) and the value.

10.1.6 Comments

Comments do not affect the output of a JSP page in any way but are useful for docu-
mentation purposes. The syntax of a JSP comment is

 <%-- Anything you want to be commented --%>

A JSP comment always starts with <%-- and ends with --%>.
We can comment the Java code within scriptlets and declarations by using normal

Java-style comments and the HTML portions of a page by using HTML-style com-
ments, as shown here:

 <html><body>
 Welcome!
 <%-- JSP comment --%>
 <% //Java comment %>
 <!—- HTML comment -->
 </body></html>

As we mentioned earlier, the exam does not cover comments, but they can be quite
useful when you’re debugging JSP pages. The JSP engine drops everything between
<%-- and --%>, so it is easy to comment out large parts of a JSP page—including
nested HTML and other JSP tags. However, remember that you cannot nest JSP com-
ments within other JSP comments.

Quizlet
Q: Which of the following page directives are valid?

a <% page language="java" %>

b <%! page language="java" %>

c <%@ page language="java" %>
172 CHAPTER 10 THE JSP TECHNOLOGY MODEL—THE BASICS

Licensed to Tricia Fu <tricia.fu@gmail.com>

A: Only option c is correct. Directives use an @ in the opening tag.
Q: What is wrong with the following code?

 <!% int i = 5; %>
 <!% int getI() { return i; } %>

A: The opening tag for a declaration is <%! and not <!%.
Q: Assuming that myObj refers to an object and m1() is a valid method

on that object, tell why each of the following are valid or invalid
JSP constructs.
a <% myObj.m1() %>

b <%= myObj.m1() %>

c <% =myObj.m1() %>

d <% =myObj.m1(); %>

A: The following table explains why an option is valid or invalid.

The valid way to write this as a scriptlet is

 <% myObj.m1(); %>

However, this will just call the method; it will not generate any output.
If the method m1() returns a value, then the correct way to write this as
an expression is

 <%= myObj.m1() %>

This will print the return value of the method call to the output HTML.

10.2 THE JSP PAGE LIFE CYCLE

A JSP page goes through seven phases in its lifetime. These phases are called life-cycle
phases. The exam requires you to know the sequence of the phases and the activity that
takes place in each of the phases. But before we start discussing the life cycle of a JSP
page, we need to understand the two important points regarding JSP pages that are

Construct Explanation

<% myObj.m1() %> Invalid: It is not an expression because it does not have an = sign. It is an
invalid scriptlet because a semicolon is missing at the end of the method
call.

<%=myObj.m1() %> Depends: The = sign makes it an expression. But if the return type of the
method m1() is void, it is invalid. A method call inside an expression is
valid if and only if the return type of the method is not void.

<% =myObj.m1() %> Invalid: There is a space between <% and =. Hence, it is not an expression
but a scriptlet. However, the scriptlet construct is not valid because
=myObj.m1(), by itself, is not a valid Java statement.

<% =myObj.m1();%> Invalid: Same as previous example except that it has a semicolon.
THE JSP PAGE LIFE CYCLE 173

explained in the following sections.

Licensed to Tricia Fu <tricia.fu@gmail.com>

10.2.1 JSP pages are servlets

Although, structurally, a JSP page looks like an HTML page, it actually runs as a servlet.
The JSP engine parses the JSP file and creates a corresponding Java file. This file
declares a servlet class whose members map directly to the elements of the JSP file. The
JSP engine then compiles the class, loads it into memory, and executes it as it would
any other servlet. The output of this servlet is then sent to the client. Figure 10.1 illus-
trates this process.

10.2.2 Understanding translation units

Just as an HTML page can include the contents of other HTML pages (for example,
when using frames), a JSP page can include the contents of other JSP pages and HTML
174 CHAPTER 10 THE JSP TECHNOLOGY MODEL—THE BASICS

Figure 10.1 A JSP page as a servlet

Licensed to Tricia Fu <tricia.fu@gmail.com>

pages. This is done with the help of the include directive (see chapter 12 for more
information). But an important thing to remember here is that when the JSP engine
generates the Java code for a JSP page, it also inserts the contents of the included pages
into the servlet that it generates. The set of pages that is translated into a single servlet
class is called a translation unit. Some of the JSP tags affect the whole translation unit
and not just the page in which they are declared.

Keep in mind these other points regarding a translation unit:

• The page directives explained in section 10.3 affect the whole translation unit.

• A variable declaration cannot occur more than once in a single translation unit.
For example, we cannot declare a variable in an included page using the
include directive if it is already declared in the including page since the two
pages constitute a single translation unit.

• The standard action <jsp:useBean> cannot declare the same bean twice in a
single translation unit. We examine the jsp:useBean action further in chap-
ter 14.

10.2.3 JSP life-cycle phases

You might have observed that when a JSP page is accessed for the first time, the server
is slower in responding than it is in the second, third, and subsequent accesses. This is
because, as we mentioned previously, every JSP page must be converted into an
instance of a servlet class before it can be used to service client requests. For each
request, the JSP engine checks the timestamps of the source JSP page and the corre-
sponding servlet class file to determine if the JSP page is new or if it has already been
converted into a class file. Therefore, if we modify a JSP page, the whole process of con-
verting the JSP page into a servlet is performed again. This process consists of seven
phases, and you need to understand their order and significance for the exam.
Table 10.4 lists the phases in the order in which they occur.

Table 10.4 JSP page life-cycle phases

Phase name Description

Page translation The page is parsed and a Java file containing the corresponding serv-
let is created.

Page compilation The Java file is compiled.

Load class The compiled class is loaded.

Create instance An instance of the servlet is created.

Call jspInit() This method is called before any other method to allow initialization.

Call _jspService() This method is called for each request.

Call jspDestroy() This method is called when the servlet container decides to take the
servlet out of service.
THE JSP PAGE LIFE CYCLE 175

Licensed to Tricia Fu <tricia.fu@gmail.com>

Creating the servlet instance

The first four life-cycle phases involve the process of converting the JSP page into an
instance of a servlet class.

Translation

During the translation phase, the JSP engine reads a JSP page, parses it, and validates
the syntax of the tags used. For example, the following directive is invalid since it uses
an uppercase P in Page and will be caught during the translation phase:

 <%@ Page language="java" %>

In addition to checking the syntax, the engine performs other validity checks, some of
which involve verifying that

• The attribute-value pairs in the directives and standard actions are valid.

• The same JavaBean name is not used more than once in a translation unit.

• If we are using a custom tag library, the library is valid.

• The usage of custom tags is valid.

Once the validations are completed, the engine creates a Java file containing a public
servlet class.

Compilation

In the compilation phase, the Java file generated in the previous step is compiled using
the normal Java compiler javac (or using a vendor-provided compiler or even a user-
specified compiler2). All the Java code that we write in declarations, scriptlets, and
expressions is validated during this phase. For example, the following declaration tag
is a valid JSP tag and will pass the translation phase, but the declaration statement is
not a valid Java declaration statement because it does not end with a semicolon and
will be caught during the compilation phase:

 <%! int count = 0 %>

Scripting language errors (Java, in this case) are caught during the compilation phase.
We can force a compilation of a JSP page without actually executing it by using the
precompilation request parameter jsp_precompile. For example, if we want to
compile the counter.jsp page without executing it, we must access the page as

 http://localhost:8080/chapter10/counter.jsp?jsp_precompile=true

The engine will translate the JSP page and compile the generated servlet class without
actually executing the servlet. This can be quite useful during the development phase
if we have complex JSP pages that create database connections or access other J2EE

2 This varies from container to container. Please consult the servlet container documentation for more
176 CHAPTER 10 THE JSP TECHNOLOGY MODEL—THE BASICS

information.

Licensed to Tricia Fu <tricia.fu@gmail.com>

services. Also, it is always a good idea to precompile all the pages. In this way, we check
for syntax errors and keep the pages ready to be served, thus reducing the response time
for the first request to each page.

NOTE The parameter jsp_precompile takes a Boolean value, true or false.
If the value is false, the precompilation will not occur. The parameter
can also be specified without any value, in which case the default is true:

 http://localhost:8080/chapter10/counter.jsp?jsp_precompile

In either case, true or false, the page will not be executed.

Also, this would be a good place to point out that all of the request parameter names
that include the prefix jsp are reserved and must not be used for user-defined values.
Thus, the following usage is not recommended and may result in unexpected behavior:

 http://localhost:8080/chapter10/counter.jsp?jspTest=myTest

Loading and instantiation

After successful compilation, the container loads the servlet class into memory and
instantiates it.

Calling the JSP life-cycle methods

The generated servlet class for a JSP page implements the HttpJspPage interface of
the javax.servlet.jsp package. The HttpJspPage interface extends the
JspPage interface of the same package, which in turn extends the Servlet inter-
face of the javax.servlet package. The generated servlet class thus implements
all the methods of these three interfaces and is also known as the page’s implementa-
tion class.

The JspPage interface declares only two methods—jspInit() and jsp-
Destroy()—that must be implemented by all JSP pages regardless of the client-
server protocol. However, the JSP specification has provided the HttpJspPage
interface specifically for JSP pages serving HTTP requests. This interface declares one
method: _jspService(). Here are the signatures of the three JSP methods:

 public void jspInit();

 public void _jspService(HttpServletRequest request,
 HttpServletResponse response)
 throws
 javax.servlet.ServletException,
 java.IO.IOException;

 public void jspDestroy();

These methods are called the life-cycle methods of the JSP pages. The jspInit(),
_jspService(), and jspDestroy() methods of a JSP page are equivalent to the
THE JSP PAGE LIFE CYCLE 177

init(), service(), and destroy() methods of a servlet, respectively.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Every JSP engine vendor provides a vendor-specific class that is used as a base class
for the page’s implementation class. This base class provides the default implementa-
tions of all the methods of the Servlet interface and the default implementations
of both methods of the JspPage interface: jspInit() and jspDestroy().
During the translation phase, the engine adds the _jspService() method to
the JSP page’s implementation class, thus making the class a concrete subclass of the
three interfaces.

jspInit()

The container calls jspInit() to initialize the servlet instance. It is called before
any other method, and is called only once for a servlet instance. We normally define
this method to do initial or one-time setup, such as acquiring resources and
initializing the instance variables that have been declared in the JSP page using <%!
... %> declarations.

_jspService()

The container calls the _jspService() for each request, passing it the request and
the response objects. All of the HTML elements, the JSP scriptlets, and the JSP expres-
sions become a part of this method during the translation phase. We discuss the details
of this method in chapter 11.

jspDestroy()

When the container decides to take the instance out of service, it calls the jsp-
Destroy() method. This is the last method that is called on the servlet instance, and
it is used to clean up the resources acquired in the jspInit() method.

We are not required to implement the jspInit() and jspDestroy()
methods, since they have already been implemented by the base class. If we need to
override them, we can do so using the JSP declaration tag <%! ... %>. However,
we cannot define our own _jspService() method because the engine gener-
ates it automatically.

10.2.4 JSP life-cycle example

Let’s modify our counter example to add persistence capabilities to it so that the
counter does not start from 1 each time the server is shut down and restarted.
Listing 10.2 illustrates how we can

• Use jspInit()to load the previous value of the counter from a file when
the server starts.

• Use jspDestroy() to save the final value to the file when the server
shuts down.
178 CHAPTER 10 THE JSP TECHNOLOGY MODEL—THE BASICS

Licensed to Tricia Fu <tricia.fu@gmail.com>

<%@ page language="java" import="java.io.*" %>

<%!
 // A variable to maintain the number of visits.
 int count = 0;

 // Path to the file, counter.db, which stores the count
 // value in a serialized form. The file acts like a database.
 String dbPath;

 // This is the first method called by the container,
 // when the page is loaded. We open the db file,
 // read the integer value, and initialize the count variable.
 public void jspInit()
 {
 try
 {
 dbPath = getServletContext().getRealPath("/WEB-INF/counter.db");
 FileInputStream fis = new FileInputStream(dbPath);
 DataInputStream dis = new DataInputStream(fis);
 count = dis.readInt();
 dis.close();
 }
 catch(Exception e)
 {
 log("Error loading persistent counter", e);
 }
 }
%>

<%--
 The main content that goes to the browser.
 This will become a part of the generated _jspService() method
--%>
<html><body>
<% count++; %>
Welcome! You are visitor number
<%= count %>
</body></html>

<%!

 // This method is called by the container only once when the
 // page is about to be destroyed. We open the db file in this
 // method and save the value of the count variable as an integer.

 public void jspDestroy()
 {
 try
 {
 FileOutputStream fos = new FileOutputStream(dbPath);

Listing 10.2 persistent_counter.jsp
THE JSP PAGE LIFE CYCLE 179

 DataOutputStream dos = new DataOutputStream(fos);

Licensed to Tricia Fu <tricia.fu@gmail.com>

 dos.writeInt(count);
 dos.close();
 }
 catch(Exception e)
 {
 log("Error storing persistent counter", e);
 }
 }

%>

This example illustrates three things: the use of the jspInit() method, the use of
the jspDestroy() method, and the use of the getServletContext() method.

When the page is first loaded into the servlet container, the engine will call the
jspInit() method. In this method, we initialize the count variable to the value
read in from the resource database file "/WEB-INF/counter.db". During its life-
time, the JSP page may be accessed zero or more times, and each time the
_jspService() method will be executed. Since the scriptlet <% count++; %>
becomes a part of the _jspService() method, the expression count++ is evaluated
each time, increasing the counter by 1. Finally, when the page is about to be destroyed,
the container will call the jspDestroy() method. In this method, we open the
resource database file again, and save the latest value of the variable count into it.

Because the JSP page is converted into a servlet, we can call all the methods in a
JSP page that we can call on a servlet. Hence we can get the ServletContext object
via getServletConfig().getServletContext(). Also, the base class of the
page’s generated class extends javax.servlet.http.HttpServlet, which
gives us access to the log() method. In Tomcat and many other containers, the base
class of the page’s generated class also implements the ServletConfig interface.
Thus, in both methods, jspInit() and jspDestroy(), we get the Servlet-
Context object by using the method getServletContext(), which is actually
defined in the javax.servlet.ServletConfig interface. The returned Servlet-
Context object can then be used in a JSP page exactly the way we use it in normal
servlets. In our example, we are using the ServletContext object to convert
the relative path of a resource into its real path. If the web application is installed
in the directory C:\jakarta-tomcat5.0.25\webapps\chapter10, then a
call to getServletContext().getRealPath("/WEB-INF/counter.db");
will return C:\jakarta-tomcat-5.0.25\webapps\chapter10\WEB-INF\
counter.db.

When the server is started the very first time and the page is first accessed, the file
counter.db does not exist and a FileNotFoundException is thrown. We can
catch the exception and log the error message with this method.3 When the server is
180 CHAPTER 10 THE JSP TECHNOLOGY MODEL—THE BASICS

3 Tomcat uses the <CATALINA_HOME>\logs\ directory as the default directory to create log files.

Licensed to Tricia Fu <tricia.fu@gmail.com>

shut down the first time, the jspDestroy() method creates a new file, and the cur-
rent value of the variable is written into it. When the server is started the second time
and the JSP page is loaded, the jspInit() method will find the file and initialize
the count variable to its previously saved value.

The JSP technology thus combines the best of both worlds: the ease of use
offered by the web scripting methodology and the object-oriented features of the
servlet technology.

10.3 UNDERSTANDING JSP
PAGE DIRECTIVE ATTRIBUTES

A page directive informs the JSP engine about the overall properties of a JSP page.
This directive applies to the entire translation unit and not just to the page in which
it is declared. Table 10.5 describes the 12 possible attributes for the page directive.

Table 10.5 Attributes for the page directive

Attribute name Description Default value/s

import A comma-separated list of Java classes and
packages that we want to use in the JSP page.

java.lang.*;
javax.servlet.*;
javax.servlet.jsp.*;
javax.servlet.http.*;

session A Boolean literal specifying whether the JSP
page takes part in an HTTP session.

true

errorPage Specifies a relative URL to another JSP page that
is capable of handling errors on behalf of the cur-
rent page.

null

isErrorPage A Boolean literal specifying whether the current
JSP page is capable of handling errors.

false

language Any scripting language supported by the
JSP engine.

java

extends Any valid Java class that implements
javax.servlet.jsp.JspPage.

Implementation dependent

buffer Specifies the size of the output buffer. If a buffer
size is specified, it must be in kilobytes (kb). If
buffering is not required, specify the string none.

Implementation dependent

autoFlush A Boolean literal indicating whether the buffer
should be flushed when it is full.

true

info Any informative text about the JSP page. Implementation dependent

contentType Specifies the MIME type and character encoding
for the output.

text/html;char
set=ISO-8859-1

pageEncoding Specifies the character encoding of the
JSP page.

ISO-8859-1
UNDERSTANDING JSP PAGE DIRECTIVE ATTRIBUTES 181

Licensed to Tricia Fu <tricia.fu@gmail.com>

While the exam requires that you know all of the valid page directive attributes and
their values, it focuses more on the usage of the first four: import, session,
errorPage, and isErrorPage.

10.3.1 The import attribute

The import attribute of a page directive is similar to the import statement in a
Java class. For example, if we want to use the Date class of the package java.util,
then we have to either use the fully qualified class name in the code or import it using
the page directive. At the time of translation, the JSP engine inserts an import state-
ment into the generated servlet for each of the packages declared using this attribute.

We can import multiple packages in a single tag by using a comma-separated list
of package names, as shown here:

 <%@ page import="java.util.*, java.io.*, java.text.*,
 com.mycom.*, com.mycom.util.MyClass " %>

We can also use multiple tags for readability. For example, the above page directive
can also be written as:

 <%@ page import="java.util.* " %>
 <%@ page import="java.io.* " %>
 <%@ page import="java.text.* " %>
 <%@ page import="com.mycom.*, com.mycom.util.MyClass " %>

Since the order of import statements in a Java class does not matter, the order of
import tags shown here does not matter, either. A JSP engine always imports the
java.lang.*, javax.servlet.*, javax.servlet.jsp.*, and javax.
servlet.http.* packages, so we do not have to import them explicitly.

NOTE import is the only attribute of the page directive that can occur multiple
times in a translation unit. Duplicate values are ignored.

10.3.2 The session attribute

The session attribute indicates whether the JSP page takes part in an HTTP ses-
sion. The default value is true, in which case the JSP engine declares the implicit
variable session. (We will learn more about implicit variables in chapter 11.) If we
do not want the page to participate in a session, then we have to explicitly add the
following line:

 <%@ page session="false" %>

10.3.3 The errorPage and isErrorPage attributes

During the execution of a page, it is possible that the embedded Java code will throw
exceptions. Just as in normal Java programs, we can handle the exceptions in JSP pages
using try-catch blocks. However, the JSP specification defines a better approach,
which separates the error-handling code from the main page and thus promotes reus-
182 CHAPTER 10 THE JSP TECHNOLOGY MODEL—THE BASICS

ability of the exception-handling mechanism. In this approach, a JSP page uses the

Licensed to Tricia Fu <tricia.fu@gmail.com>

errorPage attribute to delegate the exception to another JSP page that has the error-
handling code. In listing 10.3, errorHandler.jsp is specified as the error handler.

<%@ page errorPage="errorHandler.jsp" %>
<html>
<body>
 <%
 if (request.getParameter("name")==null)
 {
 throw new RuntimeException("Name not specified");
 }
 %>
 Hello, <%=request.getParameter("name")%>
</body>
</html>

The JSP page in listing 10.3 throws an exception if the parameter name is not supplied
in the request, but it does not catch the exception itself. Instead, with the help of the
errorPage attribute, it instructs the JSP engine to delegate the error handling to
errorHandler.jsp.

The isErrorPage attribute conveys whether the current page can act as an error
handler for any other JSP page. The default value of the isErrorPage attribute is
false. For example, the errorHandler.jsp that we used in the previous exam-
ple must explicitly set this attribute to true, as shown in listing 10.4. In this case, the
JSP engine declares the implicit variable exception in the page’s servlet class.

<%@ page isErrorPage="true" %>
<html>
<body>
 Unable to process your request: <%=exception.getMessage()%>

 Please try again.
</body>
</html>

Notice that this page only extracts the information from the exception and generates
an appropriate error message. Because it does not implement any business logic, it can
be reused for different JSP pages.

 It is not necessary that the errorPage value be a JSP page. It can also be a static
file, such as an HTML page:

Listing 10.3 hello.jsp: Using errorPage to delegate exceptions

Listing 10.4 errorHandler.jsp: Handling exceptions
UNDERSTANDING JSP PAGE DIRECTIVE ATTRIBUTES 183

 <%@ page errorPage="errorHandler.html" %>

Licensed to Tricia Fu <tricia.fu@gmail.com>

Obviously, we cannot write a scriptlet or an expression in the HTML file error-
Handler.html to generate dynamic messages.

NOTE In general, it is always a good programming practice to specify an error page
in all the JSP pages. This prevents unanticipated error messages from being
displayed on the client’s browser.

10.3.4 The language and extends attributes

The language attribute specifies the language used by a page in declarations,
scriptlets, and expressions. The default value is java, which is also the only value
allowed by the JSP Specification 2.0. Needless to say, adding the following line to a
JSP page is redundant:

 <%@ page language="java" %>

The extends attribute specifies that the supplied class be used as a base class of the
generated servlet. This is useful only if we want to customize the behavior of the gen-
erated servlet class. The default base class is vendor specific and is designed to work
efficiently with the rest of the framework. Consequently, this attribute is seldom used.
The following line shows the syntax for this attribute:

 <%@ page extends="mypackage.MySpecialBaseServlet" %>

10.3.5 The buffer and autoFlush attributes

The buffer attribute specifies the minimum size required by the output buffer that
holds the generated content until it is sent to the client. The default size of the buffer
is JSP engine implementation dependent, but the specification mandates it to be at
least 8kb. The following line sets the buffer size to 32kb:

 <%@ page buffer="32kb" %>

The value of the buffer is in kilobytes and the suffix kb is mandatory. To send the data
directly to the client without any buffering, we can specify the value as none.

The autoFlush attribute specifies whether the data in the output buffer should
be sent to the client automatically as soon as the buffer is full. The default value for
autoFlush is true. If it is set to false and the buffer is full, an exception is raised
when we attempt to add more data to the buffer. Here is the syntax for this attribute:

 <%@ page autoFlush="false" %>

Obviously, the following combinations occurring in a JSP page are invalid and may
either cause an error at translation time or have an unknown behavior at runtime:

 <%@ page buffer="none" autoFlush="false" %>
 <%@ page buffer="0kb" autoFlush="false" %>
184 CHAPTER 10 THE JSP TECHNOLOGY MODEL—THE BASICS

Licensed to Tricia Fu <tricia.fu@gmail.com>

10.3.6 The info attribute

The info attribute allows us to specify the value of the string returned by the get-
ServletInfo() method of the generated servlet. The following line shows one pos-
sible use:

 <%@ page info="This is a sample Page. " %>

The default value of this attribute is implementation dependent.

10.3.7 The contentType and pageEncoding attributes

The contentType attribute specifies the MIME type and character encoding of the
output. The default value of the MIME type is text/html; the default value of the
character encoding is ISO-8859-1. The MIME type and character encoding are sep-
arated by a semicolon, as shown here:

 <%@ page contentType="text/html;charset=ISO-8859-1" %>

This is equivalent to writing the following line in a servlet:

 response.setContentType("text/html;charset=ISO-8859-1");

The pageEncoding attribute specifies the character encoding of the JSP page. The
default value is ISO-8859-1. The following line illustrates the syntax:

 <%@ page pageEncoding="ISO-8859-1" %>

Quizlet
Q: Which of the following page directives are valid and which are invalid?

a <%@ page import="java.util.* java.text.* " %>

b <%@ page import="java.util.*", "java.text.* " %>

c <%@ page buffer="8kb", session="false" %>

d <%@ page import="com.manning.servlets.* " %>

 <%@ page session="true" %>

 <%@ page import="java.text.*" %>

e <%@ page bgcolor="navy" %>

f <%@ page buffer="true" %>

g <%@ Page language='java' %>

A: The following table explains why an option is valid or invalid.

Page directive Valid/ invalid Reasons

<%@ page import="java.util.*
java.text.* " %>

Invalid: A comma is required between the values.
<%@ page import="java.util.*,
java.text.* " %>

<%@ page
import="java.util.*",
"java.text.* " %>

Invalid: Both packages must be specified in the
same string.

continued on next page
UNDERSTANDING JSP PAGE DIRECTIVE ATTRIBUTES 185

Licensed to Tricia Fu <tricia.fu@gmail.com>

10.4 SUMMARY

In this chapter, we examined JavaServer Pages as a web scripting methodology. We
learned the basic rules of the six JSP syntax elements—directives, declarations, script-
lets, expressions, actions, and comments—and we examined the first four in depth.
We learned that JSP pages are translated into servlet instances before serving the cli-
ent’s requests, and we reviewed the seven phases of the JSP page life cycle. We then
looked at the three life-cycle methods—jspInit(), _jspService(), and jsp-
Destroy()—and how they are used in the initialization, servicing, and destruction
of a JSP page.

Through its 12 attributes, a page directive provides information about the overall
properties of a JSP page to the JSP engine. We need to understand all of the attributes
for writing real-life JSP pages, but in preparing for the exam, it is especially important
to understand import, session, errorPage, and isErrorPage.

In the next chapter, we will continue our discussion of JavaServer Pages as we
examine some of the more advanced features that form a logical extension of the
servlet technology.

10.5 REVIEW QUESTIONS

1. Consider the following code and select the correct statement about it from the
options below. (Select one)

 <html><body>
 <%! int aNum=5 %>
 The value of aNum is <%= aNum %>
 </body></html>

<%@ page buffer="8kb",
session="false" %>

Invalid: A comma is not allowed between
attributes.

<%@ page import="com.man
ning.scwcd.servlets.* " %>
<%@ page session="true" %>
<%@ page
import="java.text.*" %>

Valid: The order and placement of page direc tives
do not matter.
The import attribute can occur multiple
times.

<%@ page bgcolor="navy" %> Invalid: bgcolor is not a valid attribute.

<%@ page buffer="true" %> Invalid: true is not a valid value for the buffer
attribute. The value must specify the size of
the buffer in kb.

<%@ Page language='java' %> Invalid Directive names, attributes, and values
are case sensitive. We must use page and
not Page.

Page directive Valid/ invalid Reasons
186 CHAPTER 10 THE JSP TECHNOLOGY MODEL—THE BASICS

a It will print "The value of aNum is 5" to the output.
b It will flag a compile-time error because of an incorrect declaration.

Licensed to Tricia Fu <tricia.fu@gmail.com>

c It will throw a runtime exception while executing the expression.
d It will not flag any compile-time or runtime errors and will not print anything to

the output.

2. Which of the following tags can you use to print the value of an expression to
the output stream? (Select two)

a <%@ %>

b <%! %>

c <% %>

d <%= %>

e <%-- --%>

3. Which of the following methods is defined by the JSP engine? (Select one)

a jspInit()

b _jspService()

c _jspService(ServletRequest, ServletResponse)

d _jspService(HttpServletRequest, HttpServletResponse)

e jspDestroy()

4. Which of the following exceptions may be thrown by the _jspService()
method? (Select one)

a javax.servlet.ServletException

b javax.servlet.jsp.JSPException

c javax.servlet.ServletException and javax.servlet.jsp.JSPException
d javax.servlet.ServletException and java.io.IOException
e javax.servlet.jsp.JSPException and java.io.IOException

5. Write the name of the method that you can use to initialize variables declared in
a JSP declaration in the space provided. (Write only the name of the method. Do
not write the return type, parameters, or parentheses.)

a [________________]

6. Which of the following correctly declares that the current page is an error page
and also enables it to take part in a session? (Select one)

a <%@ page pageType="errorPage" session="required" %>

b <%@ page isErrorPage="true" session="mandatory" %>

c <%@ page errorPage="true" session="true" %>

d <%@ page isErrorPage="true" session="true" %>

e None of the above.
REVIEW QUESTIONS 187

Licensed to Tricia Fu <tricia.fu@gmail.com>

C H A P T E R 1 1

The JSP technology

model—advanced topics

11.1 Understanding the translation

process 189
11.2 Understanding JSP implicit variables

11.3 Understanding JSP page scopes 207
11.4 JSP pages as XML documents 211
11.5 Summary 215
and JSP implicit objects 198 11.6 Review questions 216
EXAM OBJECTIVES

 6.3 Write a JSP Document (XML-based document) that uses the correct syntax.
(Section 11.4)

 6.5 Given a design goal, write JSP code using the appropriate implicit objects: request,
response, out, session, config, application, page, pageContext, and exception.
(Sections 11.2 and 11.3)

INTRODUCTION

In chapter 10, “The JSP technology model—the basics,” we reviewed the basic ele-
ments of JSP pages. In this chapter, we continue our discussion of the JSP technology
model by examining some of the more advanced features of the JSP framework.
188

Licensed to Tricia Fu <tricia.fu@gmail.com>

11.1 UNDERSTANDING THE TRANSLATION PROCESS

As we discussed in chapter 10, the first phase of the life cycle of a JSP page is the trans-
lation phase, in which the JSP page is translated into a Java file containing the corre-
sponding servlet. The JSP engine parses the JSP page and applies the following rules
for translating the JSP elements to the servlet code:

• Some directives are used by the JSP engine during the translation phase to
generate Java code. For example, the import attribute of the page directive
aids in generating import statements, while the info attribute aids in imple-
menting the getServletInfo() method of the generated servlet class.
Some directives just inform the engine about the overall properties of the page;
for instance, the language attribute informs the engine that we are using Java
as the scripting language, and the pageEncoding attribute informs the
engine of the character encoding of the page.

• All JSP declarations become a part of the generated servlet class. They are cop-
ied as is. Thus, variables declared in a JSP declaration become instance vari-
ables, and the methods declared in a JSP declaration become instance methods
of the servlet.

• All JSP scriptlets become a part of the generated _jspService() method.
They are copied as is. Thus, variables declared in a scriptlet become local vari-
ables of the _jspService() method. We cannot declare a method in a
scriptlet since we cannot have methods declared inside other methods in Java.

• All JSP expressions become a part of the _jspService() method. They are
wrapped inside out.print().

• All JSP actions are replaced by calls to vendor-specific classes.

• All JSP comments are ignored.

• Any other text becomes part of the _jspService() method. It is wrapped
inside out.write(). This text is also called template text.

In the following sections, we will look at some of the implications of these transla-
tion rules.

11.1.1 Using scripting elements

Since the declarations, scriptlets, and expressions allow us to write scripting language
code in JSP pages, these elements are collectively referred to as the scripting elements.
We use Java as the scripting language, and consequently, the rules of the Java program-
ming language govern the compile-time and runtime behavior of the code in the
scripting elements. Let’s examine them one by one with examples.
UNDERSTANDING THE TRANSLATION PROCESS 189

Licensed to Tricia Fu <tricia.fu@gmail.com>

Order of declarations

Because all the variables and methods defined in the declarations of a JSP page become
members of the generated servlet class, their order of appearance in a page does not
matter. The following example (listing 11.1) highlights this behavior.

<html>
<body>
 Using pi = <%=pi%>, the area of a circle

 with a radius of 3 is <%=area(3)%>

<%!
 double area(double r)
 {
 return r*r*pi;
 }
%>

<%! final double pi=3.14159; %>
</body>
</html>

In this case, even though the constant pi and the method area() are used before
they are defined, the page will translate, compile, and run just fine, printing the fol-
lowing output:

Using pi = 3.14159, the area of a circle
with a radius of 3 is 28.27431

Order of scriptlets

Since scriptlets become a part of the _jspService() method in the generated serv-
let, the variables declared in a scriptlet become local variables of the method; conse-
quently, their order of appearance is important. The following code demonstrates this:

<html>
<body>
<% String s = s1+s2; %>
<%! String s1 = "hello"; %>
<% String s2 = "world"; %>
<% out.print(s); %>
</body>
</html>

In this example, s and s2 are declared in a scriptlet while s1 is declared in a declara-
tion. Because s2 is used before it is declared, this code will not compile.

Listing 11.1 area.jsp

Error: undefined
variable s2

Member variable s1
Local variable s2
190 CHAPTER 11 THE JSP TECHNOLOGY MODEL—ADVANCED TOPICS

Licensed to Tricia Fu <tricia.fu@gmail.com>

Initialization of the variables

In Java, instance variables are automatically initialized to their default values, while
local variables must be initialized explicitly before they are used. Hence, the vari-
ables declared in JSP declarations are initialized to their default values, while the
variables declared in JSP scriptlets must be initialized explicitly before they are used.
Consider the following example:

<html>
<body>
 <%! int i; %>
 <% int j; %>
 The value of i is <%= i++ %>

 The value of j is <%= j++ %>

</body>
</html>

The variable i, declared using a declaration (<%!...%>), becomes an instance vari-
able of the generated class and is initialized to 0. The variable j, declared using a script-
let (<%...%>), becomes a local variable of the generated method _jspService()
and remains uninitialized. Since Java requires local variables to be initialized explicitly
before use, this code is invalid and will not compile.

Another important thing to remember is that the instance variables are created and
initialized only once, when the JSP container instantiates the servlet. Thus, variables
declared in JSP declarations retain their values across multiple requests. On the other
hand, local variables are created and destroyed for every request. Thus, variables
declared in a scriptlet do not retain their values across multiple requests and are rein-
itialized each time the JSP container calls _jspService().

To make the above code compile, we have to initialize j as

 <% int j=0; %>

Now, if we access the above page multiple times, the value of i will get incremented,
printing a new value each time, while the value of j will always be printed as 0.

11.1.2 Using conditional and iterative statements

Scriptlets are used for embedding computational logic, and frequently this logic
includes conditional and iterative statements. For example, the following scriptlet code
uses a conditional statement to check a user’s login status, and based on that status, it
displays an appropriate message:

 <%
 boolean isUserLoggedIn = ... //get login status
 if (isUserLoggedIn)
 {
 out.print("<h3>Welcome!</h3>");
 }

OK: i is 0 by
default

Error: j not
initialized
UNDERSTANDING THE TRANSLATION PROCESS 191

 else
 {

Licensed to Tricia Fu <tricia.fu@gmail.com>

 out.println("Hi! Please log in to access the member's area.
");
 out.println("Login");
 }
 %>

If we want to include a large amount of HTML within the body of a conditional state-
ment, we can avoid writing multiple out.println() statements by spanning the
conditional statement across multiple scriptlets in the JSP page, as shown in the fol-
lowing example:

 <html><body>

 <%
 boolean isUserLoggedIn = ... //get login status
 if (isUserLoggedIn)
 {
 %>

 <h3>Welcome!</h3>
 A lot of HTML here...

 <%
 }
 else
 {
 %>

 Hi! Please log in to access the member's area.
 login
 A lot of HTML here...

 <%
 }
 %>

 </body></html>

In the above code snippet, the if-else statement is spread across three scriptlets. At
runtime, the first scriptlet gets the login status of the user and assigns it to the bool-
ean variable isUserLoggedIn. If the value of this variable is true, then the
HTML code between the first scriptlet and the second scriptlet is included in the out-
put stream. If the value is false, then the HTML code between the second scriptlet
and the third scriptlet is included in the output stream.

Note the usage of the curly braces to mark the beginning and end of the Java pro-
gramming language code blocks. Omitting the braces might cause an error at compile
time or an undesired behavior at runtime. For example:

 <% if (isUserLoggedIn) %>
 Welcome, <%= userName %>!

will be translated to

 if (isUserLoggedIn)
192 CHAPTER 11 THE JSP TECHNOLOGY MODEL—ADVANCED TOPICS

 out.write("Welcome, ");
 out.print(userName);

Licensed to Tricia Fu <tricia.fu@gmail.com>

In this case, the statement out.print(userName); will be executed even if the
value of isUserLoggedIn is false. The correct way to write this is

 <% if (isUserLoggedIn)
 {
 %>
 Welcome, <%= userName %>!
 <%
 }
 %>

Like conditional statements, iterative statements can also span across multiple script-
lets, with regular HTML code in between the scriptlets. Such constructs are commonly
used for displaying long lists of values in a tabular format. The following example illus-
trates this usage:

 <html><body>
 List of logged in users:
 <table>

 <tr>
 <th> Name </th>
 <th> email </th>
 </tr>

 <%
 User[] users = //get an array of logged in users

 for(int i=0; i< users.length; i++)

 {

 %>

 <tr>
 <td> <%= users[i].name %> </td>
 <td> <%= users[i].email %> </td>
 </tr>

 <%
 } // For loop ends

 %>

 </table>
 </body></html>

The above code uses two scriptlets to enclose HTML code within a for loop; the first
scriptlet opens the loop block and the second scriptlet closes the loop block. Notice
that the HTML code between the two scriptlets contains only one row and that it
embeds JSP expressions that use the loop variable i declared by the previous scriptlet.

At request time, the loop may be executed zero or more times based on the length
of the users array. For each execution, the HTML code will insert one row into the
table. Thus, if the length of the users array is 9, it will create a table with nine rows
UNDERSTANDING THE TRANSLATION PROCESS 193

in the output stream. Also, since the scriptlet will increment the value of the variable

Licensed to Tricia Fu <tricia.fu@gmail.com>

i each time after the loop is executed, the expressions within the HTML code will
index into a different element in the users array with each iteration.

Thus, we can generate a variable-sized table containing dynamic rows and columns
with the help of multiple scriptlets and expressions.

11.1.3 Using request-time attribute expressions

JSP expressions are not always written to the output stream of the JSP page; they can
also be used to pass values to action attributes:

 <% String pageURL = "copyright.html"; %>
 <jsp:include page="<%= pageURL %>" />

In this case, the value of the JSP expression <%= pageURL %> does not go into the
output stream. It is evaluated at request time, and its value is assigned to the page
attribute of the jsp:include action. An expression used in this way to pass a value
to an action attribute is called a request-time attribute expression.

An important point to remember here is that such a mechanism of providing
request-time attribute values cannot be used in directives, because directives have
translation time semantics; this means that the JSP engine uses the directives during
the page translation time only. Thus, the two directives in the following example are
not valid:

 <%!
 String bSize = "32kb";
 String pageUrl = "copyright.html";
 %>

 <%@ page buffer="<%= bSize %>" %>
 <%@ include file="<%= pageUrl %>" %>

11.1.4 Using escape sequences

Like any programming language, the JSP scripting language also has special characters
that have a specific meaning from the JSP parser’s point of view. These characters are
the single quote, the double quote, the backslash, and the character sequences <%@,
<%!, <%=, <%, %>, <%--, and --%>. To use them in a manner other than as special
characters, we have to use a backslash and create an escape sequence in order to instruct
the parser not to use them as special characters. Let’s examine the different situations
where we must use the escape sequences.

In template text

All scripting elements—declarations (<%!), scriptlets (<%), and expressions (<%=)—
start with the characters <%. Hence, while parsing the JSP page, the parser looks for
the character sequence <% to find the start of a tag. If we want to use the string literal
<% in a normal template text as is, we have to escape the character % with a backslash
194 CHAPTER 11 THE JSP TECHNOLOGY MODEL—ADVANCED TOPICS

(\), as shown in the following example:

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <html><body>
 The opening tag of a scriptlet is <\%
 The closing tag of a scriptlet is %>
 </body></html>

Note in this example that we can use the sequence %> without using an escape char-
acter, because the parser is not looking for that sequence while parsing the text.

In scripting elements

All scripting elements end with the tag %>. Therefore, after reading the opening tag,
the parser looks for the character sequence %> to find the end of the tag. If we want to
use the string literal %> within a scripting element as is, we have to escape the character
> with a backslash, as shown in the following example:

 <html><body>
 <%= "The opening tag of a scriptlet is <%" %>
 <%= "The closing tag of a scriptlet is %\>" %>
 </body></html>

Note that we can use the sequence <% without an escape character, because the parser
is not looking for that sequence; it is already in the middle of parsing the scripting ele-
ment, which is an expression.

In attributes

For string literals used in attribute values, we have to escape the special characters with
a backslash character. Consider the following snippet:

 <%@ page info="A sample use of ', \", \\, <\%, and %\> characters. " %>
 <html><body>
 <%= getServletInfo() %>
 </body></html>

This code will generate the following into the output HTML:

 A sample use of ', ", \, <%, and %> characters.

Note that we have used a backslash for the double quote but not for the single quote.
This is because the value is enclosed in a pair of double quotes. If we use a pair of single
quotes to enclose the entire value, then we have to escape the single quote appearing
within the value as shown here:

 <%@ page info='A sample use of \', ", \\, <\%, and %\> characters. ' %>

In case of request-time attribute expressions, we cannot use a pair of double quotes
within a pair of double quotes or a pair of single quotes enclosed within a pair of single
quotes. Thus, the following is invalid:
UNDERSTANDING THE TRANSLATION PROCESS 195

 <jsp:include page="<%= "copyright.html" %>" />

Licensed to Tricia Fu <tricia.fu@gmail.com>

It can be rectified either by using the escape sequence \" or by using a pair of single
quotes for the entire value and a pair of double quotes for the string literal in the
JSP expression:

 <jsp:include page='<%= "copyright.html" %>' />

 <jsp:include page="<%= \"copyright.html\" %>" />

NOTE Some browsers will not render content between tags it doesn’t understand.
For example, Internet Explorer 6.0 on Windows XP SP2 (and possibly ear-
lier versions) does not render the page as expected. To ensure you get a <%
and %> on your web page, you can replace the < and > characters with their
HTML-escaped equivalents:

<html><body>
 The opening tag of a scriptlet is <%
 The closing tag of a scriptlet is %>
</body></html>

As you can see, this also eliminates the problem of <% and %> being parsed
as special characters.

Quizlet
Q: Explain whether the following are valid or invalid JSP constructs.

a <%=myObj.m1(); %>

b <% int x=4, y=5; %>

 <%=x=y%>
c <% myObj.m1(); %>

A: a Invalid: The = sign makes it a JSP expression. However, JSP expres-
sions are not terminated with a semicolon. The generated servlet code
will cause a syntax error:

 out.print(myObj.m1(););

b Valid: <%=x=y%> will be translated to:

 out.print(x=y);

The value of y is assigned to x, and the new value of x is then printed
out. The output will be 5.

c Valid: It is a valid scriptlet because a semicolon ends the method call
statement. It would be valid even if the method returns a value,
because the value would be ignored. Let’s look at a similar example:

 Welcome! You are visitor number <% ++count; %>

This is a very common mistake, and it is often difficult to debug.
The above code will compile and run without any errors, but it will
196 CHAPTER 11 THE JSP TECHNOLOGY MODEL—ADVANCED TOPICS

not print the desired output. This is how the JSP engine will translate
the code:

Licensed to Tricia Fu <tricia.fu@gmail.com>

 out.write("Welcome! You are visitor number ");
 ++count;

It increments the count variable, but does not use out.print() to
print its value. To print the value, we have to make it an expression by
inserting an equals sign (=) after the opening tag (<%) and removing
the semicolon (;) from the end, as shown here:

 Welcome! You are visitor number <%= ++count %>

Q: What is wrong with the following code?

 <%@ page language='java' %>
 <%
 int x = 0;
 int incr() { return ++x; }
 %>
 The value of x is <%=incr()%>

A: We cannot define methods in a scriptlet. Upon translation of the above
code into a servlet, the _jspService() method will look like this:

 public void _jspService(...)
 {
 ...other code

 int x = 0;
 int incr() { return ++x; }
 out.write("The value of x is ");
 out.print(incr());
 }

Since the incr() method is declared inside the _jspService()
method, the code will not compile.

Q: Will the following code compile?

 <% int x = 3; %>
 <%! int x = 5; %>
 <%! int y = 6; %>
 The sum of x and y is <%=x+y%>

A: Yes. It will compile and print

 The sum of x and y is 9

Upon translation of the above code into a servlet, the variable x will be
declared twice: once global to the class because of the declaration
<%! int x = 5; %> and once local to the _jspService() method
because of the scriptlet <% int x = 3; %>:

 public class xyz ...
 {
UNDERSTANDING THE TRANSLATION PROCESS 197

 ...other code

Licensed to Tricia Fu <tricia.fu@gmail.com>

 int x = 5;
 int y = 6;

 public void _jspService(...)
 {
 ...other code

 int x = 3;
 out.write("The sum of x and y is ");

 out.print(x+y);
 }
 }

Since local variables have precedence over global variables, the expres-
sion x+y evaluates as 3+6.

Q: What is the output of the following code?

 <% int i; %>
 <%
 for(i=0; i<3; i++)
 %>
 The value of i is <%=i%>

A: This code will translate into

 int i;
 for (int i=0; i<3; i++)
 out.write("The value of i is ");
 out.print(i);

Since we have not enclosed the body of the loop in a block { … }, it
will print

 The value of i is The value of i is The value of i is 3

11.2 UNDERSTANDING JSP IMPLICIT VARIABLES
AND JSP IMPLICIT OBJECTS

During the translation phase, the JSP engine declares and initializes nine commonly
used variables in the _jspService() method. We have already seen the use of one
of them, out, in some of our previous examples:

<html><body>
 <%
 out.print("Hello World! ");
 %>
</body></html>

Even though we have not defined the variable out in this example, the code will trans-
late, compile, and execute without errors. This is because out is one of the nine vari-
ables that the JSP engine implicitly makes available to the JSP page. Table 11.1
198 CHAPTER 11 THE JSP TECHNOLOGY MODEL—ADVANCED TOPICS

describes these variables.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Let’s take a look at the way Tomcat 5.0.25 declares these variables in the generated
servlet for a JSP file. Follow these steps:

1 Create a blank file in the C:\jakarta-tomcat-5.0.25\webapps\
chapter11 directory and name it implicit.jsp.

2 Start Tomcat.

3 From your browser, navigate to the URL http://localhost:8080/
chapter11/implicit.jsp.

Although you will not see any content in the browser window, the JSP engine
will create a Java file named implicit_jsp.java in the C:\Jakarta-
tomcat-5.0.25\work\Catalina\localhost\chapter11\org\apache
\jsp directory.1 This file contains the servlet that corresponds to the JSP file,
implicit.jsp. The _jspService() method of the servlet is shown in
Listing 11.2.

Table 11.1 Implicit variables available to JSP pages

Identifier name Class or interface Description

application interface
javax.servlet.ServletContext

Refers to the web applica-
tion’s environment

session interface
javax.servlet.http.HttpSession

Refers to the user’s session

request interface
javax.servlet.http.HttpServlet
Request

Refers to the current
request to the page

response interface
javax.servlet.http.HttpServlet
Response

Used for sending a
response to the client

out class javax.servlet.jsp.JspWriter Refers to the output stream
for the page

page class java.lang.Object Refers to the page’s serv-
let instance

pageContext class javax.servlet.jsp.PageContext Refers to the page’s envi-
ronment

config interface
javax.servlet.ServletConfig

Refers to the servlet’s con-
figuration

exception class java.lang.Throwable Used for error handling

1 The exact name and location of the generated Java source file, and the exact contents of that file, are
UNDERSTANDING JSP IMPLICIT VARIABLES AND JSP IMPLICIT OBJECTS 199

not the same between various versions of Tomcat.

Licensed to Tricia Fu <tricia.fu@gmail.com>

public void _jspService(
 HttpServletRequest request,
 HttpServletResponse response)
 throws java.io.IOException,
 ServletException
{

 ...other code

 PageContext pageContext = null;
 HttpSession session = null;
 ServletContext application = null;
 ServletConfig config = null;
 JspWriter out = null;
 Object page = this;

 ...other code

 pageContext = ...//get it from somewhere
 session = pageContext.getSession();
 application = pageContext.getServletContext();
 config = pageContext.getServletConfig();
 out = pageContext.getOut();

 ...other code
}

As you can see, eight variables are already declared and available within the
_jspService() method. To declare the ninth one, open the implicit.jsp file
and add the following line:

 <%@ page isErrorPage="true" %>

Save the file and go to the same URL again. Now you should see the following line
added to the generated implicit_jsp.java file:

 Throwable exception =
 (Throwable) request.getAttribute("javax.servlet.jsp.jspException");

Because the page author does not (and cannot) declare these variables explicitly, they
are called implicit variables. The objects that these variables refer to are created by the
servlet container and are called implicit objects. The exam may ask you to state their
types, scopes, and uses. We will discuss the use of these nine implicit variables first, and
then talk about their scopes in section 11.3.

11.2.1 application

The application variable is of type javax.servlet.ServletContext, and
it refers to the environment of the web application to which the JSP page belongs. (We
discussed the ServletContext class at length in chapter 6, “The servlet container

Listing 11.2 implicit$jsp.java
200 CHAPTER 11 THE JSP TECHNOLOGY MODEL—ADVANCED TOPICS

model.”) Thus, the following two scriptlets are equivalent:

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <%
 String path = application.getRealPath("/WEB-INF/counter.db");
 application.log("Using: "+path);
 %>

 <%
 String path = getServletContext().getRealPath("/WEB-INF/counter.db");
 getServletContext().log("Using: "+path);
 %>

11.2.2 session

Before we discuss the session implicit variable, let’s clarify that the word session
refers to four different but related things in JSP:

• Session, as in an HTTP session, is a concept that logically groups multiple
requests from the same client as part of one conversation. We discussed HTTP
sessions in chapter 8, “Session management.”

• session, as used in a page directive, refers to the attribute named session.

 <%@ page session="true" %>

• Its value, which is true or false, determines whether or not the JSP page
participates in an HTTP session.

• session, as an implicit object (which we will talk about in this section), refers
to the variable session of type javax.servlet.http.HttpSession.

• Session, as a scope of an object, refers to the lifetime and availability of the
object. A session-scoped object persists throughout the life of an HTTP session.
We will discuss scope in the next section.

The implicit variable session is declared if the value of the session attribute of
the page directive is true. Since by default, the value of the session attribute is
true, this variable is declared and is made available to the page even if we do not spec-
ify the page directive. However, if we explicitly set the session attribute to false,
the JSP engine does not declare this variable, and any use of the variable results in an
error. The following example demonstrates this:

 <html>
 <body>
 <%@ page session="false" %>

 Session ID = <%=session.getId()%>
 </body>
 </html>

In the above example, the page directive sets the session attribute to false in
order to indicate that the current page will not participate in an HTTP session.
This makes the implicit variable session unavailable in the page. So the line

session is not used

Error: undefined
symbol session
UNDERSTANDING JSP IMPLICIT VARIABLES AND JSP IMPLICIT OBJECTS 201

session.getId() will generate a compile-time error.

Licensed to Tricia Fu <tricia.fu@gmail.com>

11.2.3 request and response

The request and response implicit variables are of type javax.servlet.
http.HttpServletRequest and javax.servlet.http.HttpServlet-
Response, respectively. They are passed in as parameters to the _jspService()
method when the page’s servlet is executed upon a client request. We use them in JSP
pages in exactly the same way we use them in servlets—that is, to analyze the request
and send a response:
 <%
 String remoteAddr = request.getRemoteAddr();
 response.setContentType("text/html;charset=ISO-8859-1");
 %>

 <html><body>

 Hi! Your IP address is <%=remoteAddr%>

 </body></html>

11.2.4 page

The implicit variable page is of class java.lang.Object, and it refers to the
instance of the generated servlet. It is declared as

 Object page = this; //this refers to the instance of this servlet.

This variable is rarely used. In fact, since it is a variable of type Object, it cannot be
used to directly call the servlet methods:

 <%= page.getServletInfo() %>

 <%= ((Servlet)page).getServletInfo() %>

 <%= this.getServletInfo() %>

The first expression will generate a compile-time error indicating that getServ-
letInfo() is not a method of java.lang.Object.

In the second expression, we have typecast the page reference to Servlet. Since
page refers to the generated class and the class implements the Servlet interface,
it is a valid cast. Also, because getServletInfo() is a method of the Servlet
interface, the expression will compile and execute without errors. Note that, in this
case, the page variable could also be cast to JspPage or HttpJspPage since these
two interfaces are derived from the Servlet interface and are implemented by the
generated servlet class.

In the third expression, we are using the Java keyword this to refer to the gen-
erated servlet. Therefore, it will also compile and execute without errors.

11.2.5 pageContext

The pageContext variable is of type javax.servlet.jsp.PageContext. The
PageContext class is an abstract class, and the JSP engine vendor provides its con-

Error

OK: typecast

OK
202 CHAPTER 11 THE JSP TECHNOLOGY MODEL—ADVANCED TOPICS

crete subclass. It does three things:

Licensed to Tricia Fu <tricia.fu@gmail.com>

• Stores references to the implicit objects. If you look at the generated servlet
code for the implicit.jsp file (listing 11.2), you will see that the
session, application, config, and out implicit variables are initial-
ized using the objects retrieved from pageContext. The pageContext
object acts as a one-stop place for managing all the other objects, both user-
defined and implicit, used by the JSP page, and it provides the getter meth-
ods to retrieve them.

• Provides convenience methods to get and set attributes in different scopes.
These are explained in section 11.3.4.

• Provides convenience methods, described in table 11.2, for transferring requests
to other resources in the web application.

For example, to forward a request to another resource from a servlet, we have to write
the following two lines:

 RequestDispatcher rd = request.getRequestDispatcher("other.jsp");
 rd.forward(request, response);

In a JSP page, we can do that in just one line by using the pageContext variable:

 pageContext.forward("other.jsp");

For a complete list of all the methods of the PageContext class, please refer to the
JSP API.

11.2.6 out

The implicit variable out is of type javax.servlet.jsp.JspWriter. This
variable is the workhorse of JSP pages. We use it directly in scriptlets and indirectly in
expressions to generate HTML code:

 <% out.print("Hello 1"); %>
 <%= "Hello 2" %>

For both of the above lines, the generated servlet code will use the out variable to print
the values:

 public void _jspService(...)

Table 11.2 Convenience methods of javax.servlet.jsp.PageContext for transferring

requests to other resources

Method Description

void include(String
relativeURL)

Includes the output of another resource in the output of the current
page. Same as
ServletRequest.getRequestDispatcher().include();.

void forward(String
relativeURL)

Forwards the request to another resource. Same as
ServletRequest.getRequestDispatcher().forward();.
UNDERSTANDING JSP IMPLICIT VARIABLES AND JSP IMPLICIT OBJECTS 203

 {

Licensed to Tricia Fu <tricia.fu@gmail.com>

 //other code
 out.print("Hello 1");
 out.print("Hello 2");
 }

The JspWriter class extends java.io.Writer and inherits all the overloaded
write() methods. On top of these methods, JspWriter adds its own set of over-
loaded print() and println() methods for printing out all the primitive data
types, Strings, and the user-defined objects in the output stream. The following
example prints out different data types using the out variable:

 <%
 int anInt = 3;
 Float aFloatObj = new Float(11.6);

 out.print(anInt); //int
 out.print(anInt > 0); //boolean
 out.print(anInt*3.5/100-500); //float expression
 out.print(aFloatObj); //object
 out.print(aFloatObj.floatValue()); //float method
 out.print(aFloatObj.toString()); //String method
 %>

11.2.7 config

The implicit variable config is of type javax.servlet.ServletConfig. As
we saw in chapter 5 (“Structure and deployment”), each servlet can be passed a sepa-
rate set of configuration parameters in the deployment descriptor, and the servlet can
then retrieve this information using its own copy of the ServletConfig object.

Similarly, we can also pass configuration parameters that are specific to a JSP page,
which the page can retrieve using the implicit variable config. To achieve this, we
have to first declare a servlet with a <servlet-name> in the deployment descriptor
web.xml. Then, instead of providing a <servlet-class>, we associate the
named servlet with the JSP file, using the element <jsp-file>. All of the initializa-
tion parameters for this named servlet will then be available to the JSP page via the
page’s ServletConfig implicit object. The web.xml file shown in listing 11.3
illustrates this.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <servlet>
 <servlet-name>InitTestServlet</servlet-name>

Listing 11.3 Configuring InitTestServlet and mapping it to a JSP page in web.xml
204 CHAPTER 11 THE JSP TECHNOLOGY MODEL—ADVANCED TOPICS

 <jsp-file>/initTest.jsp</jsp-file>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <init-param>
 <param-name>region</param-name>
 <param-value>North America</param-value>
 </init-param>
 </servlet>

</web-app>

The deployment descriptor in listing 11.3 declares a servlet named InitTestServ-
let and maps it to the JSP file <document root>/initTest.jsp. Then it spec-
ifies an initialization parameter named region with the value of North America
for the servlet. This information can be retrieved by initTest.jsp using the
implicit variable config, as shown in listing 11.4.

<html><body>
 Servlet Name = <%=config.getServletName()%>

 Parameter region = <%=config.getInitParameter("region")%>
</body></html>

When the JSP page initTest.jsp is accessed as a servlet, using the URL http:/
/localhost:8080/chapter11/servlet/InitTestServlet, it will print
the following output:

 Servlet Name = InitTestServlet
 Parameter region = North America

However, if this page is accessed directly using the initTest.jsp page’s actual URL,
http://localhost:8080/chapter11/initTest.jsp, then the configura-
tion in listing 11.4 for InitTestServlet is not used. This is because the JSP
engine creates two different instances of the generated servlet class—one for accessing
it as a named servlet and one for accessing it as a JSP page—and will pass each servlet
instance a different ServletConfig object. In order to be able to use the same serv-
let instance—and hence the same configuration—when using either of the URLs men-
tioned above, we have to explicitly map the JSP page’s URL in the deployment
descriptor file using the <servlet-mapping> element:

 <servlet-mapping>
 <servlet-name>InitTestServlet</servlet-name>
 <url-pattern>/initTest.jsp</url-pattern>
 </servlet-mapping>

When mapped this way, the container will create only one instance of the generated
servlet class and requests for both the URLs will be served by the same instance, thus

Listing 11.4 initTest.jsp
UNDERSTANDING JSP IMPLICIT VARIABLES AND JSP IMPLICIT OBJECTS 205

guaranteeing the same configuration.

Licensed to Tricia Fu <tricia.fu@gmail.com>

The rules for the <servlet-mapping> for JSP pages are the same as in the case
of normal servlets. We can provide just about any URL pattern, and each time the pat-
tern matches the client’s request URL, the container will execute the specified JSP page
(actually, the generated servlet for the JSP page).

11.2.8 exception

This implicit variable is of type java.lang.Throwable. The exception vari-
able is available to the pages that act as error handlers for other pages. Recall from
chapter 11 that error-handler pages have the page directive attribute isErrorPage
set to true. Consider the following two JSP code examples:

Example 1
 <html><body>
 <%@ page isErrorPage='true' %>
 Msg: <%=exception.toString()%>
 </body></html>

Example 2
 <html><body>
 Msg: <%=exception.toString()%>
 </body></html>

In example 1, the engine defines the exception variable implicitly because the
attribute isErrorPage is set to true. The exception variable refers to the
uncaught java.lang.Throwable object thrown by a page that uses this page as
its error handler.

In example 2, the engine does not define the variable exception implicitly
because the attribute isErrorPage has a default value of false.

Quizlet
Q: What is wrong with the following code?

 <%!
 public void jspInit(){
 application.getInitParameter("Region");
 }
 %>

A: Recall that all the implicit variables are automatically declared by the JSP
engine in the generated _jspService() method, which means they
are available only in scriptlets and expressions. In a declaration, we have
to explicitly declare the variables:

 <%!
 public void jspInit(){
 ServletContext application = this.getServletContext();

 application.getInitParameter("Region");

OK: exception
defined implicitly

Error: exception
not defined
206 CHAPTER 11 THE JSP TECHNOLOGY MODEL—ADVANCED TOPICS

 }
 %>

Licensed to Tricia Fu <tricia.fu@gmail.com>

11.3 UNDERSTANDING JSP PAGE SCOPES

In chapter 4, “The servlet model,” we introduced the concept of scope, which is the
way that data is shared between servlets using the three container objects, Servlet-
Context, HttpSession, and ServletRequest. The scopes associated with
these three container objects are, respectively, the application scope, the session scope,
and the request scope. The JSP technology, since it is based on servlet technology, also
uses the three scopes, which are referred to in JSP pages as application, session, and
request scopes. In addition, JSP pages have a fourth scope, the page scope, which is
maintained by the container object PageContext.

All of the implicit objects as well as the user-defined objects in a JSP page exist in
one of these four scopes, described in table 11.3. These scopes define the existence and
accessibility of objects from within the JSP pages and servlets.

As shown in table 11.3, objects in the application scope are the most accessible and
objects in the page scope are the least accessible. Let’s take a closer look at these scopes.

11.3.1 Application scope

Application-scoped objects are shared across all the components of the web applica-
tion and are accessible for the life of the application. These objects are maintained as
attribute-value pairs by an instance of the ServletContext class. In a JSP page,
this instance is available in the form of the implicit object application. Thus, to
share objects at the application level, we use the setAttribute() and get-
Attribute() methods of the ServletContext interface.

11.3.2 Session scope

Objects in the session scope are shared across all the requests that belong to a single-
user session and are accessible only while the session is valid. These objects are main-
tained as attribute-value pairs by an instance of the HttpSession class. In a JSP
page, this instance is available in the form of the implicit object session. Thus, to
share objects at the session level, we can use the session.setAttribute() and
session.getAttribute() methods.

In the following example, the login.jsp page adds the user ID to the session

Table 11.3 Scopes of objects in JSP pages

Scope Name Existence and Accessibility

Application Limited to a single web application

Session Limited to a single user session

Request Limited to a single request

Page Limited to a single page (translation unit) and a single request
UNDERSTANDING JSP PAGE SCOPES 207

scope so that the userProfile.jsp page can retrieve it:

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <%--
 Add the userId to the session
 --%>
 <%
 String userId = // getUserLoggedIn
 session.setAttribute("userId", userId);
 %>

In the file userProfile.jsp:

 <%--
 Retrieve the userId from the session
 --%>
 <%
 String userId = (String) session.getAttribute("userId")

 //use the userId to retrieve user details.
 String name = getUserNameById(userId);
 %>

 User Name is: <%=name%>

Here, the session scope is used to make the username and ID available to all the
requests in the session.

11.3.3 Request scope

Objects in the request scope are shared across all the components that process the same
request and are accessible only while that request is being serviced. These objects are
maintained as attribute-value pairs by an implementation instance of the interface
HttpServletRequest. In a JSP page, this instance is available in the form of the
implicit object request. Thus, we can add attributes to the request in one page and
forward the request to another page. The second page can then retrieve these attributes
to generate a response.

In this example, the file login.jsp creates a user object and adds it to the
request, and then forwards the request to authenticate.jsp:

 <%
 //Get login and password information from the request object
 //and file it in a User Object.

 User user = new User();
 user.setLogin(request.getParameter("login"));
 user.setPassword(request.getParameter("password"));

 //Set the user object in the request scope for now
 request.setAttribute("user", user);

 //Forward the request to authenticate.jsp
 pageContext.forward("authenticate.jsp");
 return;
 %>
208 CHAPTER 11 THE JSP TECHNOLOGY MODEL—ADVANCED TOPICS

In the file authenticate.jsp:

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <%
 //Get user from the forwarding page
 User user = (User) request.getAttribute("user");

 //Check against the database.
 if (isValid(user))
 {
 //remove the user object from request scope
 //and maintain it in the session scope
 request.removeAttribute("user");
 session.setAttribute("user",user);

 pageContext.forward("account.jsp");
 }
 else
 {
 pageContext.forward("loginError.jsp");
 }
 return;
 %>

Here, the page (login.jsp) adds a User object to the request scope and forwards
the request to authenticate.jsp. At that point, authenticate.jsp validates
the user information against the database and, depending on the outcome of the
authentication process, either transfers the object into the session scope and forwards
the request to account.jsp, or forwards the request to loginError.jsp.,
which generates an appropriate response by using the User object. We call return;
after forwarding the request to prevent writing anything to the output stream after the
request is forwarded because doing so would throw an IllegalStateException.

11.3.4 Page scope

Objects in the page scope are accessible only in the translation unit in which they are
defined. They do not exist outside the processing of a single request within a single
translation unit. These objects are maintained as attribute-value pairs by an instance
of a concrete subclass of the abstract class PageContext. In a JSP page, this instance
is available in the form of the implicit object pageContext.

The use of the page scope and the pageContext container object may not be
obvious right now, but it will become clearer when we will learn about the use of Java-
Beans in chapter 14, “Using JavaBeans,” and custom tags in chapters 16, “Developing
classic custom tag libraries,” and 17, “Developing ‘Simple’ custom tag libraries.” The
only way for actions (standard JSP actions and user-defined custom tags) to share data
and JavaBean objects with other actions or custom tags appearing in the same JSP page
(translation unit) and in the same request thread is to use the pageContext implicit
object and the page scope.

To share objects in the page scope, we can use the two methods defined by Page-
UNDERSTANDING JSP PAGE SCOPES 209

Context, shown in table 11.4.

Licensed to Tricia Fu <tricia.fu@gmail.com>

The PageContext object also provides a common and convenient way to handle all
of the objects in all of the scopes. Table 11.5 describes the defined constants and meth-
ods used for this purpose.

The six implicit objects—response, out, page, pageContext, config, and
exception—are also considered to have page scope by the JSP specification. They
are all maintained by the pageContext container object and can be obtained using

Table 11.4 Convenience methods of javax.servlet.jsp.PageContext

Method Description

void setAttribute(String
name, Object attribute)

Adds an attribute to the page scope

java.lang.Object
getAttribute(String name)

Returns the object associated with the name in the page scope
or null if not found

Table 11.5 Convenience scope-handling constants and methods of

javax.servlet.jsp.PageContext

Member Description

Integer constants that work with scopes

static final int APPLICATION_SCOPE Indicates application scope

static final int SESSION_SCOPE Indicates session scope

static final int REQUEST_SCOPE Indicates request scope

static final int PAGE_SCOPE Indicates page scope

Methods that accept scope constants

void setAttribute(String name,
Object object, int scope);

Sets the attribute in the specified scope

java.lang.Object getAttribute(String
name, int scope);

Returns the object associated with the name in
the specified scope or null if not found

void removeAttribute(String name,
int scope)

Removes the object associated with the speci-
fied name from the given scope

java.util.Enumeration
getAttributeNamesIn Scope(int scope)

Enumerates all the attributes in a given scope

Convenience scope search methods

Object
findAttribute(java.lang.String name)

Searches for the named attribute in page,
request, session (if valid), and application
scope(s) in this order and returns the
associated value

int getAttributesScope(String name) Gets the scope in which a given attribute is
defined
210 CHAPTER 11 THE JSP TECHNOLOGY MODEL—ADVANCED TOPICS

their respective getter methods.

Licensed to Tricia Fu <tricia.fu@gmail.com>

However, their existence and accessibility is somewhat different from the user-
defined objects. Although the JSP specification defines these implicit objects as being
in the page scope, they are not logically restricted to that scope. For example, the page
implicit object refers to the generated servlet instance. For the same servlet instance,
if there are multiple threads that are serving multiple requests, possibly even in mul-
tiple sessions, then the same implicit object page is shared by all those threads and
is thus accessible by all the requests and in all the sessions. Similarly, the Servlet-
Config object, referred to as the implicit variable config, is also shared by multiple
threads that are serving multiple requests, possibly in multiple sessions.

Quizlet
Q: Objects in which scope are accessible to all of the web applications of a

servlet container?
A: There is no scope that can share objects across multiple web applica-

tions. To do that, we have to either use ServletContext.get-
Context() as explained in chapter 4 or use other mechanisms, such as
an external database.

11.4 JSP PAGES AS XML DOCUMENTS

The JSP specification defines two sets of syntax for authoring JSP pages: standard JSP
syntax format and XML syntax format. JSP files that use the standard syntax are called
JSP pages, while the JSP files that use the XML syntax are called JSP documents.

We have already seen the standard syntax of the elements of a JSP page in the pre-
vious chapter. In this section, we will learn about the XML-style tags that make up a
JSP document. The exam does not require you to know all the details of the XML for-
mat, but you are expected to know the XML-based tags for writing the directives and
the scripting elements.

The best way to learn and remember the XML-style tags is to compare them with
their JSP-style counterparts. So let’s first look at the code for the JSP document
counter_xml.jsp (listing 11.5), which is an XML equivalent of the code for the
JSP page counter.jsp that we saw in chapter 11 (listing 11.1).

<jsp:root
 xmlns:jsp="http://java.sun.com/JSP/Page"
 version="2.0">

 <html><body>

 <jsp:directive.page language="java" />

 <jsp:declaration>
 int count = 0;

Listing 11.5 counter_xml.jsp
JSP PAGES AS XML DOCUMENTS 211

 </jsp:declaration>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <jsp:scriptlet>
 count++;
 </jsp:scriptlet>

 <jsp:text>
 Welcome! You are visitor number
 </jsp:text>

 <jsp:expression>

 count
 </jsp:expression>

 </body></html>

</jsp:root>

The JSP document in listing 11.5 counts the number of times it is visited during a
server session. We will discuss its XML elements and tags in the following sections.

You should remember two important points about using the XML and JSP syn-
tax together:

• The standard JSP tags and XML-based tags cannot be mixed within a single
JSP page.

• A page written in one syntax format can, however, include or forward to a page
in the other syntax format by using either directives or actions.

As with directives and actions in the JSP syntax format, the following rules apply to all
of the elements in XML syntax format:

• The tag names, attribute names, and attribute values are all case sensitive.

• The value must be surrounded by a pair of single or double quotes.

• A pair of single quotes is equivalent to a pair of double quotes.

• There must be no space between the equals sign (=) and the value.

11.4.1 The root element

As seen in listing 11.5, the XML syntax requires that the entire JSP page be enclosed in
a single root element:

 <jsp:root
 xmlns:jsp="http://java.sun.com/JSP/Page"
 version="2.0" >

 Rest of the page

 </jsp:root>

The attribute-value pair xmlns:jsp="http://java.sun.com/JSP/Page"
tells the JSP engine that the prefix jsp is used to identify the tags in the library spec-
212 CHAPTER 11 THE JSP TECHNOLOGY MODEL—ADVANCED TOPICS

ified by the URI http://java.sun.com/JSP/Page. This library contains the
standard elements defined by the JSP specification. Thus, all the JSP tags in listing 11.5

Licensed to Tricia Fu <tricia.fu@gmail.com>

are of the form <jsp:...>. The attribute version informs the engine about the
version of the JSP specification used in the page. Both of the attributes are mandatory.

xmlns stands for XML Name Space. Functionally, it is the same as the prefix
attribute of a taglib directive in the JSP syntax. Hence, it is also used to specify the
use of the custom tag libraries in the page:

 <jsp:root
 xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:myLib="www.someserver.com/someLib"
 version="2.0" >

 Rest of the page

 </jsp:root>

The attribute-value pair xmlns:myLib="www.someserver.com/someLib"
tells the JSP engine that the page uses custom tags of the form <myLib:...> and
that the details of these custom tags are located in the library indicated by the URI
www.someserver.com/someLib.

Tag libraries will be discussed in chapter 15, “Using custom tags,” chapter 16,
“Developing classic custom tag libraries,” and chapter 17, “Developing ‘Simple” cus-
tom tag libraries.”

NOTE There is no equivalent to <jsp:root> in the JSP syntax.

11.4.2 Directives and scripting elements

There are only two directives in the XML format: page and include:

 <jsp:directive.page ...attributeList... />
 <jsp:directive.include ...attributeList... />

There is no taglib directive in the XML format since the tag library information is
specified in the root element. The attributes and use of the page and include direc-
tives are the same in both XML syntax and JSP syntax.

The three scripting elements—declarations, scriptlets, and expressions—use the
following syntax, respectively:

 <jsp:declaration>
 Any valid Java declaration statements
 </jsp:declaration>

 <jsp:scriptlet>
 Any valid Java code
 </jsp:scriptlet >

 <jsp:expression>
 Any valid Java expression
 </jsp:expression >

This syntax for expression is used when we want to write the expression values to
JSP PAGES AS XML DOCUMENTS 213

the output HTML. For a request-time attribute expression, we have to use %= ...%,
as in the following example:

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <jsp:scriptlet>
 String pageURL = "copyright.html";
 </jsp:scriptlet>

 <jsp:include page="%=pageURL%" />

In this case, the value of the pageURL variable is sent as a parameter to the
include action.

Compare this with the JSP style, where the same syntax, <%= … %>, is used for
both purposes.

11.4.3 Text, comments, and actions

A major difference between the JSP and XML syntax is the placement of normal text.
The JSP syntax allows us to incorporate text into the page without using any special
tags. However, the XML syntax requires us to embed the text between <jsp:text>
and </jsp:text>, as shown here:

<html><body>
 <jsp:text>Have a nice day!</jsp:text>
</body></html>

The JSP specification does not stipulate any special tag for writing comments in XML
format. However, since XML-based JSP pages are treated as XML documents, we
should use the standard XML-style comments:

 <!-- comment here -->

The standard JSP actions use the same tags in both the JSP syntax and XML syntax.
This is an example of an include action in either syntax:

 <jsp:include page="someOtherPage.jsp" />

Quizlet
Q: What is wrong with the following code?

 <jsp:root
 xmlns:jsp=http://java.sun.com/JSP/Page
 version="2.0" >

 2 + 3 = <jsp:expression>=2+3</jsp:expression>

 </jsp:root>

A: xmlns:jsp is the attribute and "http://java.sun.com/JSP/
Page" is the value. Thus the quotes must be around the value as:

 xmlns:jsp="http://java.sun.com/JSP/Page"

Unlike JSP syntax elements, XML syntax elements do not use any extra
characters in their tags.

 <%=2+3%> Valid JSP expression
214 CHAPTER 11 THE JSP TECHNOLOGY MODEL—ADVANCED TOPICS

 <jsp:expression>=2+3</jsp:expression> Error: = not required

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <jsp:expression>2+3</jsp:expression>

Also, the text must be enclosed in <jsp:text>:

 <jsp:text>2 + 3 = </jsp:text><jsp:expression>2+3</jsp:expression>

Q: What is wrong with the following code?

 <jsp:root
 xmlns:jsp="http://java.sun.com/JSP/Page"
 version="2.0" >

 <jsp:Text>2 + 3 = </jsp:Text>
 <jsp:Expression>2+3</jsp:Expression>

 </jsp:root>

A: All the tags are case sensitive. We must use jsp:text
and jsp:expression instead of jsp:Text and
jsp:Expression, respectively.

11.5 SUMMARY

In this chapter, we continued our discussion on the JSP technology by looking more
closely at the translation phase rules that a JSP engine applies during the page’s con-
version into a servlet. We started by discussing the various traps and pitfalls involved
in using the scripting elements (declarations, scriptlets, and expressions) to declare and
initialize variables and to write conditional and iterative statements. A good grasp of
these issues is essential when combining the Java programming language with HTML
to develop error-free and effective JSP pages.

The JSP engine declares and initializes nine commonly used variables and makes
them available to the JSP page’s generated servlet code. These are called implicit vari-
ables, and they refer to the implicit objects that are created by the servlet container.
We discussed the use of these nine implicit variables with examples, and we also saw
how they relate to the four scopes: page, request, session, and application.

The JSP specification also supports the use of XML syntax to create JSP pages.
Although much of the exam focuses on standard JSP syntax, some knowledge of the
XML syntax is expected. We reviewed the XML tags for writing JSP documents, includ-
ing directives and scripting elements, and compared them with their JSP counterparts.

With the end of this chapter, you should be ready to answer questions about the
structure of a JSP page in both the standard and the XML format, the mapping of its
elements into a servlet, and the implicitly provided objects with their scopes.

In the next chapter, we will learn different mechanisms provided by the JSP spec-
ification for reusing the JSP pages.

Valid XML expression
SUMMARY 215

Licensed to Tricia Fu <tricia.fu@gmail.com>

11.6 REVIEW QUESTIONS

1. What will be the output of the following code? (Select one)

 <html><body>
 <% x=3; %>
 <% int x=5; %>
 <%! int x=7; %>
 x = <%=x%>, <%=this.x%>
 </body></html>

a x = 3, 5

b x = 3, 7

c x = 5, 3

d x = 5, 7

e Compilation error

2. What will be the output of the following code? (Select one)

 <html><body>
 The value is <%=""%>
 </body></html>

a Compilation error
b Runtime error
c The value is
d The value is null

3. Which of the following implicit objects is not available to a JSP page by default?
(Select one)

a application

b session

c exception

d config

4. Which of the following implicit objects can you use to store attributes that need
to be accessed from all the sessions of a web application? (Select two)

a application

b session

c request

d page

e pageContext

5. The implicit variable config in a JSP page refers to an object of type: (Select one)

a javax.servlet.PageConfig
216 CHAPTER 11 THE JSP TECHNOLOGY MODEL—ADVANCED TOPICS

b javax.servlet.jsp.PageConfig

Licensed to Tricia Fu <tricia.fu@gmail.com>

c javax.servlet.ServletConfig

d javax.servlet.ServletContext

6. A JSP page can receive context initialization parameters through the deployment
descriptor of the web application.

a True
b False

7. Which of the following will evaluate to true? (Select two)

a page == this

b pageContext == this

c out instanceof ServletOutputStream

d application instanceof ServletContext

8. Select the correct statement about the following code. (Select one)

 <%@ page language="java" %>
 <html><body>
 out.print("Hello ");
 out.print("World ");
 </body></html>

a It will print Hello World in the output.
b It will generate compile-time errors.
c It will throw runtime exceptions.
d It will only print Hello.
e None of above.

9. Select the correct statement about the following code. (Select one)

 <%@ page language="java" %>
 <html><body>
 <%
 response.getOutputStream().print("Hello ");
 out.print("World");
 %>
 </body></html>

a It will print Hello World in the output.
b It will generate compile-time errors.
c It will throw runtime exceptions.
d It will only print Hello.
e None of above.

10. Which of the following implicit objects does not represent a scope container?
(Select one)
REVIEW QUESTIONS 217

a application

b session

Licensed to Tricia Fu <tricia.fu@gmail.com>

c request

d page

e pageContext

11. What is the output of the following code? (Select one)

 <html><body>
 <% int i = 10;%>

 <% while(--i>=0) { %>
 out.print(i);
 <% } %>
 </body></html>

a 9876543210

b 9

c 0

d None of above

12. Which of the following is not a valid XML-based JSP tag? (Select one)

a <jsp:directive.page />

b <jsp:directive.include />

c <jsp:directive.taglib />

d <jsp:declaration></jsp:declaration>

e <jsp:scriptlet></jsp:scriptlet>

f <jsp:expression></jsp:expression>

13. Which of the following XML syntax format tags do not have an equivalent in
JSP syntax format? (Select two)

a <jsp:directive.page/>

b <jsp:directive.include/>

c <jsp:text></jsp:text>

d <jsp:root></jsp:root>

e </jsp:param>

14. Which of the following is a valid construct to declare that the implicit variable
session should be made available to the JSP page? (Select one)

a <jsp:session>true</jsp:session>

b <jsp:session required="true" />

c <jsp:directive.page>

 <jsp:attribute name="session" value="true" />
 </jsp:directive.page>

d <jsp:directive.page session="true" />

e <jsp:directive.page attribute="session" value="true" />
218 CHAPTER 11 THE JSP TECHNOLOGY MODEL—ADVANCED TOPICS

Licensed to Tricia Fu <tricia.fu@gmail.com>

C H A P T E R 1 2
Reusable web components
12.1 Static inclusion 220
12.2 Dynamic inclusion 223

12.3 Summary 232

12.4 Review questions 232

EXAM OBJECTIVES

 6.7 Given a specific design goal for including a JSP segment in another page, write the
JSP code that uses the most appropriate inclusion mechanism (the include directive
or the jsp:include standard action).
(Sections 12.1 and 12.2)

 8.2 Given a design goal, create a code snippet using the following standard actions:

• jsp:include,
• jsp:forward, and
• jsp:param

(Section 12.2)

INTRODUCTION

Instead of building a case for reusing software components, in this chapter we will reit-
erate the well-acknowledged fact that reusable components enhance the productivity
and maintainability of applications. In this respect, the JSP specification defines mech-
anisms that allow us to reuse web components.
219

Licensed to Tricia Fu <tricia.fu@gmail.com>

Our aim in this chapter is to understand how web components can be reused.
Although the exam objective corresponding to this topic looks narrow, it requires that
you know a lot more than just syntax in order to answer the questions in the exam.

In the JSP world, reusing web components essentially means including the con-
tent or the output of another web component in a JSP page. This can be done in one
of two ways: statically or dynamically. Static inclusion involves including the con-
tents of the web component in a JSP file at the time the JSP file is translated, while in
dynamic inclusion, the output of another component is included within the output
of the JSP page when the JSP page is requested.

12.1 STATIC INCLUSION

In static inclusion, the contents of another file are included with the current JSP file at
translation time to produce a single servlet. We use the JSP include directive to accom-
plish this. We have already seen the JSP syntax of the include directive in chapter 10,
“The JSP technology model—the basics,” and the XML syntax in chapter 11, “The JSP
technology model—advanced topics.” Here is a review of that syntax:

 <%@ include file="relativeURL" %>

 <jsp:directive.include file="relativeURL" />

The file attribute is the only attribute of the include directive, and it is manda-
tory. It refers to the file that contains the static text or code that will be inserted into
the including JSP page. It can refer to any text-based file—HTML, JSP, XML, or even
a simple .txt file—using a relative URL. A relative URL means that it cannot have a
protocol, a hostname, or a port number. It can either be a path relative to the current
JSP file—that is, it does not start with a /—or it can be a path relative to the document
root of the web application—that is, it starts with a /. Figure 12.1 illustrates the way
the include directive works.
220 CHAPTER 12 REUSABLE WEB COMPONENTS

Figure 12.1 Static inclusion using the include directive

Licensed to Tricia Fu <tricia.fu@gmail.com>

Figure 12.1 shows two JSP files: a.jsp and b.jsp. The a.jsp file contains an
include directive that refers to the b.jsp file.

While generating the servlet code for a.jsp, the JSP engine includes all the ele-
ments of b.jsp. The resulting code, which is a combination of the including page
and the included page, is then compiled as a single translation unit.

When a request is made for a.jsp, it will be processed by the servlet generated
for a.jsp. However, because this servlet also contains the code from b.jsp, the
resulting HTML page will contain the generated output from a.jsp as well as b.jsp.

12.1.1 Accessing variables from the included page

Since the code of the included JSP page becomes a part of the including JSP page, each
page can access the variables and methods defined in the other page. They also share
all of the implicit objects, as shown in listing 12.1.

<html><body>

 <%

 //Get the search criteria from the request.
 String criteria = request.getParameter("criteria");

 //Search the product database and get the product IDs.
 String productId[] = getMatchingProducts(criteria);
 %>

 The following products were found that match your criteria:

 <!--
 Let productDescription.jsp generate the description
 for each of the products

 -->

 <%@ include file="productDescription.jsp" %>

 New Search:
 <!--
 FORM for another search
 -->
 <form>...</form>

</body></html>

In listing 12.1, the productsSearch.jsp file processes the search criteria entered
by the user and retrieves the matching products from the database. It then includes the
productDescription.jsp file to generate the product description.

The code for productDescription.jsp is shown in listing 12.2.

Listing 12.1 productsSearch.jsp
STATIC INCLUSION 221

Licensed to Tricia Fu <tricia.fu@gmail.com>

<%
 // The implicit variable request used here is
 // actually that of the including page.
 String sortBy = request.getParameter("sortBy");

 // Use the productId array defined by productsSearch.jsp
 // to sort and generate the description of the products
 productId = sort(productId, sortBy);

 for(int i=0; i<productId.length; i++)
 {
 // Generate a tabular description
 // for the products.
 }
%>

The productDescription.jsp file uses the implicit request object and the
productId array defined in productsSearch.jsp to generate a tabular display
of the products.

12.1.2 Implications of static inclusion

When an include directive includes a file, the following rules apply:

• No processing can be done at translation time, which means the file attribute
value cannot be an expression. Therefore, the following use of the include
directive is invalid:

 <% String myURL ="copyright.html"; %>
 <%@ include file="<%= myURL %>" %>

• Because request parameters are a property of the requests and do not make any
sense at translation time, the file attribute value cannot pass any parameters
to the included page. Thus, the value of the file attribute in the following
example is invalid:

 <%@ include file="other.jsp?abc=pqr" %>

• The included page may or may not be able to compile independently. If you look
at listing 12.2, the productDescription.jsp file cannot be compiled, since
it does not define the variable productId. In general, it is better to avoid such
dependencies and use the implicit variable pageContext to share objects across
statically included pages by using the pageContext.setAttribute() and
pageContext.getAttribute() methods.

Listing 12.2 productDescription.jsp
222 CHAPTER 12 REUSABLE WEB COMPONENTS

Licensed to Tricia Fu <tricia.fu@gmail.com>

12.2 DYNAMIC INCLUSION

In dynamic inclusion, when the JSP page is requested, it sends a request to another
object, and the output from that object is included in the requested JSP page. We use
the standard JSP actions <jsp:include> and <jsp:forward> to implement
dynamic inclusion. Their syntax is as follows:

 <jsp:include page="relativeURL" flush="true" />

 <jsp:forward page="relativeURL" />

The page attribute is mandatory. It must be a relative URL, and it can refer to any
static or dynamic web component, including a servlet. It can also be a request-time
expression, such as

 <% String pageURL = "other.jsp"; %>
 <jsp:include page="<%= pageURL %>" />

The flush attribute is only valid for <jsp:include> and not for <jsp:
forward>. It is optional and specifies that if the output of the current JSP page is
buffered, then the buffer should be flushed before passing the output stream to the
included component. The default value for the flush attribute is false.

Functionally, the <jsp:include> and <jsp:forward> actions are equiva-
lent to the RequestDispatcher.include() and RequestDispatcher.
forward() methods that are used in servlets to include and forward the requests
to other components.

12.2.1 Using jsp:include

The <jsp:include> action delegates the control of the request processing to the
included component temporarily. Once the included component finishes its pro-
cessing, the control is transferred back to the including page. Figure 12.2 illustrates
this process.

Figure 12.2 shows two JSP files, a.jsp and b.jsp. The a.jsp file contains an
include action that refers to b.jsp file. While generating the servlet code for
a.jsp, the JSP engine includes a request-time call to b.jsp, and also generates the
servlet code for b.jsp if it does not already exist. When a request is made for
a.jsp, it will be received and processed by the servlet generated for a.jsp. How-
ever, since this servlet contains a call to the b.jsp file, the resulting HTML page will
contain the output from the servlet generated for b.jsp as well as the servlet gener-
ated for a.jsp.

Because the semantics of <jsp:include> are the same as those of Request-
Dispatcher.include(), the following three constructs are equivalent:

Construct 1
 <%
DYNAMIC INCLUSION 223

 RequestDispatcher rd =
 request.getRequestDispatcher("other.jsp");

Licensed to Tricia Fu <tricia.fu@gmail.com>

 rd.include(request, response);
 %>

Construct 2

 <%
 pageContext.include("other.jsp");
 %>

Construct 3

 <jsp:include page="other.jsp" flush="true"/>

Figure 12.2 Dynamic inclusion using the include action
224 CHAPTER 12 REUSABLE WEB COMPONENTS

Licensed to Tricia Fu <tricia.fu@gmail.com>

12.2.2 Using jsp:forward

The <jsp:forward> action delegates the request processing to the forwarded com-
ponent. The forwarded component then sends the reply to the client. Figure 12.3
illustrates this process.

Figure 12.3 shows two JSP files, a.jsp and b.jsp. The a.jsp file contains a
forward action that refers to b.jsp. While generating the servlet code for a.jsp,
the JSP engine includes a request-time call to b.jsp, and also generates the servlet
code for b.jsp if it does not already exist. At request time, a.jsp partially handles
the request and delegates it to b.jsp, which then completes the request processing
and sends the reply to the client.
DYNAMIC INCLUSION 225

Figure 12.3 Dyanmic inclusion using the forward action

Licensed to Tricia Fu <tricia.fu@gmail.com>

Since the semantics of <jsp:forward> are the same as those of the Request-
Dispatcher.forward(), the following three constructs are equivalent:

Construct 1
 <%
 RequestDispatcher rd =
 request.getRequestDispatcher("other.jsp");
 rd.forward(request, response);
 %>

Construct 2
 <%
 pageContext.forward("other.jsp");
 %>

Construct 3
 <jsp:forward page="other.jsp" />

In all three cases, if the output is buffered, it is first cleared, and then the request is
forwarded to the other resource. However, if the output is not buffered and/or if the
response is already committed by the forwarding resource, then a java.lang.
IllegalStateException is raised when we attempt to forward the request.

12.2.3 Passing parameters to

dynamically included components

We can pass parameters to the dynamically included components by using the
<jsp:param /> tags. The following examples illustrate the use of the <jsp:
param> tag to pass two parameters to the included page:

 <jsp:include page="somePage.jsp">
 <jsp:param name="name1" value="value1" />
 <jsp:param name="name2" value="value2" />
 </jsp:include>

There can be any number of <jsp:param> elements nested within the
<jsp:include> or <jsp:forward> element. The value of the value attribute
can also be specified using a request-time attribute expression in the following way:

 <jsp:include page="somePage.jsp">
 <jsp:param name="name1" value="<%= someExpr1 %>" />
 <jsp:param name="name2" value="<%= someExpr2 %>" />
 </jsp:include>

In addition to parameters that are explicitly passed using the above methods, the included
components have access to parameters that were originally present in the request to
the including component. However, if the original parameter names are repeated in the
explicitly passed parameters, the new values take precedence over the old values. For
226 CHAPTER 12 REUSABLE WEB COMPONENTS

example, consider the two files paramTest1.jsp and paramTest2.jsp (shown
in listings 12.3 and 12.4).

Licensed to Tricia Fu <tricia.fu@gmail.com>

<html><body><pre>

In paramTest1:
First name is <%= request.getParameter("firstname") %>
Last name is <%= request.getParameter("lastname") %>

<jsp:include page="paramTest2.jsp" >
 <jsp:param name="firstname" value="mary" />
</jsp:include>

</pre></body></html>

In paramTest2:
First name is <%= request.getParameter("firstname") %>
Last name is <%= request.getParameter("lastname") %>

Looping through all the first names
<%
 String first[] = request.getParameterValues("firstname");
 for (int i=0; i<first.length; i++)
 {
 out.println(first[i]);
 }
%>

If you access the paramTest1.jsp file with the URL

 http://localhost:8080/chapter12/paramTest1.jsp?firstname=john&lastname=smith

the output to the browser will be

 In paramTest1:
 First name is john
 Last name is smith

 In paramTest2:
 First name is mary
 Last name is smith

 Looping through all the first names
 mary
 john

This is because when we call paramTest1.jsp (listing 12.3) using the URL given
above, it receives the request parameters as firstname=john&lastname=smith.
It prints out these values and then passes a new name-value pair, firstname=mary, to
the included page paramTest2.jsp (listing 12.4) using the <jsp:param> element.

In the included page, the new value of the firstname parameter takes prece-

Listing 12.3 The file paramTest1.jsp

Listing 12.4 The file paramTest2.jsp
DYNAMIC INCLUSION 227

dence over the original value and therefore receives the parameters as firstname=

Licensed to Tricia Fu <tricia.fu@gmail.com>

mary&firstname=john&lastname=smith. Thus, a call to request.get-
Parameter("firstname") will return "mary", while a call to request.
getParameterValues("firstname") will return an array of Strings con-
taining the values "mary" and "john". Since no new value for lastname was sup-
plied, paramTest2.jsp uses the original value, "smith".

The name-value pairs passed in via the <jsp:param> tag exist within the
request object and are available only for the included component. After the
included component has finished processing, the engine removes these values from the
request object. Thus, if the file paramTest1.jsp calls request.getParam-
eterValues("firstname") after paramTest2.jsp returns, the call will
return an array of Strings containing only one value: "john".

All of the above examples used <jsp:include>, but this discussion is equally
applicable to <jsp:forward>.

12.2.4 Sharing objects with

dynamically included components

The dynamically included pages execute separately, so they do not share the variables
and methods defined by the including page. However, they process the same request
and thus share all the objects present in the request scope, as shown in listing 12.5.

<html><body>

 <%
 //Get the search criteria from the request.
 String criteria = request.getParameter("criteria");

 //Search the product database and get the product IDs.
 String productId[] = getMatchingProducts(criteria);

 request.setAttribute("productIds", productId);
 %>

 The following products were found that match your criteria:

 <!--
 Let productDescription.jsp generate the description
 for each of the products
 -->

 <jsp:include page="productDescription.jsp" />

 New Search:
 <!--
 FORM for another search
 -->
 <form>...</form>

</body></html>

Listing 12.5 productsSearch.jsp
228 CHAPTER 12 REUSABLE WEB COMPONENTS

Licensed to Tricia Fu <tricia.fu@gmail.com>

Listing 12.5 produces the same results as listing 12.1, but it uses dynamic inclusion
instead of static inclusion. The including file, productSearch.jsp, adds the pro-
ductId object into the request scope by calling the request.setAttribute()
method. The included file, productDescription.jsp (listing 12.6), then retrieves
this object by calling the request.getAttribute() method.

<%
 //The implicit variable request used here is
 //not the same as that of the including page.
 //But the objects in the request scope are shared.

 String sortBy = request.getParameter("sortBy");

 String[] productIds = (String[])
 request.getAttribute("productIds");

 //Use the productId array here
 for(int i=0; i<productIds.length; i++)
 {
 // Generate a tabular description
 // for the products.
 }
%>

Here, the implicit variable request in productsDescription.jsp is access-
ing the same request scope objects as the implicit variable request in the
productSearch.jsp file. The same mechanism can also be used with the
<jsp:forward> action.

Note that in addition to request, we could use the implicit variables session
and application to share objects with included and forwarded pages, but they are
not meant for sharing request-dependent values. For example, if we use applica-
tion instead of request in listings 12.5 and 12.6, then the product IDs generated
for a search request from one client could affect the result of a search for another client
because they share the value of the attribute productIds in the application scope.

Quizlet
Q: Explain whether each of the following are valid or invalid.

a <jsp:include url="catalog.jsp" />

b <jsp:include page="http://myserver/catalog.jsp" />

c <jsp:include flush="true" />

d <jsp:forward flush="false" page="catalog.jsp" />

e <jsp:include page="/servlets/catalogServlet" />

f <%@ include page="catalog.jsp" %>

Listing 12.6 productDescription.jsp
DYNAMIC INCLUSION 229

g <%@ include file="/servlets/catalogServlet" %>

h <%@ include file="catalog.jsp?category=gifts" %>

Licensed to Tricia Fu <tricia.fu@gmail.com>

i <% String fileURL = "catalog.jsp"; %>

j <%@ include file="<%= fileURL %>" %>

A: The following table explains why an option is valid or invalid.

Q: What is the difference between the following constructs?

 <% pageContext.include("other.jsp"); %>

 <jsp:include page="other.jsp" />

A: They are functionally similar but with a minor difference. The page-
Context.include() method always flushes the output of the cur-
rent page before including the other components, while
<jsp:include> flushes the output of the current page only if the
value of flush is explicitly set to true, as in this example:

Example Construct
Valid/

invalid
Explanation

a <jsp:include url="catalog.jsp" /> Invalid There is no attribute
named url in
jsp:include or
jsp:forward. Use page.

b <jsp:include
page="http://myserver/catalog.jsp" />

Invalid The value of page has to
be a rela tive URL. We
cannot specify a pro
tocol, hostname, or port
number.

c <jsp:include flush="true" /> Invalid The mandatory attribute
page is missing.

d <jsp:forward
flush="false" page="catalog.jsp" />

Invalid The attribute flush is only
for jsp:include, not for
jsp:forward.

e <jsp:include
page="/servlets/catalogServlet" />

Valid The attribute page can
point to a servlet.

f <%@ include page="catalog.jsp" %> Invalid The include directive uses
file, not page.

g <%@ include
file="/servlets/catalogServlet" %>

Invalid When using the include
directive, you can include
XML, text, HTML, or
even JSP files, but not
a servlet.

h <%@ include
file="catalog.jsp?category=gifts" %>

Invalid Query strings cannot be
used with the include
directive.

i <% String fileURL = "catalog.jsp"; %>
<%@ include file="<%=fileURL%>" %>

Invalid The include directive can-
not use a request-time
attribute expression.
230 CHAPTER 12 REUSABLE WEB COMPONENTS

 <jsp:include page="other.jsp" flush="true" />

Licensed to Tricia Fu <tricia.fu@gmail.com>

Q: What is wrong with the following JSP document?

 <jsp:root
 xmlns:jsp=http://java.sun.com/JSP/Page
 version="2.0">

 <jsp:scriptlet>
 String pageURL = "other.jsp";
 </jsp:scriptlet>

 <jsp:include page="<%= pageURL %>" />

 </jsp:root>

A: The expression <%= pageURL %> is in the JSP syntax format. Recall
from the previous chapter that the correct syntax for a request-time
expression in XML syntax format is %= expr %. Thus, the
<jsp:include> action in the above code must be written as

 <jsp:include page="%=pageURL%" />

Q: The following code does not work. Identify the problem and rectify it.
In the main.jsp file:

 <html><body>

 <%
 Integer oneHundred = new Integer(100);
 Integer twoHundred = new Integer(200);
 %>

 <jsp:include page="display.jsp" >
 <jsp:param name="one" value="<%= oneHundred %>" />
 <jsp:param name="two" value="<%= twoHundred %>" />
 </jsp:include>

 </body></html>

In the display.jsp file:

 <%@ page import="java.lang.* " %>

 <%
 Integer oneHundred = (Integer) request.getParameter("one");
 Integer twoHundred = (Integer) request.getParameter("two");
 %>

A: We can use only String to pass and retrieve parameters using the
<jsp:param> and request.getParameter() mechanisms.
To pass any other type of object, we have to use request.set-
Attribute() in the including component and request.get-
Attribute() in the included component.
DYNAMIC INCLUSION 231

Licensed to Tricia Fu <tricia.fu@gmail.com>

12.3 SUMMARY

JSP technology reuses web components by including the content or output of the
components in a JSP page. There are two ways to do this: static inclusion and
dynamic inclusion.

Static inclusion happens during the translation process, and it uses the include
directive: <%@ include %>. The included file gets translated together with the
including JSP file into a single servlet class. In this way, the pages are able to share all
variables and methods.

Dynamic inclusion occurs at the time the including JSP page is requested, and it
is accomplished by the standard actions, <jsp:include> and <jsp:forward>.
In this chapter, we reviewed the techniques for passing parameters to the included
components. Even though a dynamically included component does not share variables
and methods with the including JSP page, they both process the same request and
therefore share all the objects present in the request scope.

At this point, you should be able to answer questions based on the concepts of static
and dynamic inclusion of web components in JSP pages.

In the next chapter, we will examine a new way of accessing and displaying vari-
ables in JSPs—the Expression Language.

12.4 REVIEW QUESTIONS

1. Which of the following JSP tags can be used to include the output of another
JSP page into the output of the current page at request time? (Select one)

a <jsp:insert>

b <jsp:include>

c <jsp:directive.include>

d <jsp:directive:include>

e <%@ include %>

2. Consider the contents of the following two JSP files:

File 1: test1.jsp

 <html><body>
 <% String message = "Hello"; %>

 //1 Insert LOC here.

 The message is <%= message %>
 </body></html>

File 2: test2.jsp

 <% message = message + " world!"; %>

Which of the following lines can be inserted at //1 in test1.jsp so that it
232 CHAPTER 12 REUSABLE WEB COMPONENTS

prints "The message is Hello world!" when requested? (Select one)

Licensed to Tricia Fu <tricia.fu@gmail.com>

a <%@ include page="test2.jsp" %>

b <%@ include file="test2.jsp" %>

c <jsp:include page="test2.jsp" />

d <jsp:include file="test2.jsp" />

3. Which of the following is a correct way to pass a parameter equivalent to the
query string user=mary at request time to an included component? (Select one)

a <jsp:include page="other.jsp" >

 <jsp:param paramName="user" paramValue="mary" />
 </jsp:include>

b <jsp:include page="other.jsp" >
 <jsp:param name="mary" value="user" />
 </jsp:include>

c <jsp:include page="other.jsp" >

 <jsp:param value="mary" name="user" />
 </jsp:include>

d <jsp:include page="other.jsp" >
 <jsp:param param="user" value="mary"/>
 </jsp:include>

e <jsp:include page="other.jsp" >

 <jsp:param user="mary" />
 </jsp:include>

4. Identify the JSP equivalent of the following code written in a servlet. (Select one)

 RequestDispatcher rd = request.getRequestDispatcher("world.jsp");
 rd.forward(request, response);

a <jsp:forward page="world.jsp"/>

b <jsp:action.forward page="world.jsp"/>

c <jsp:directive.forward page="world.jsp"/>

d <%@ forward file="world.jsp"%>

e <%@ forward page="world.jsp"%>

5. Consider the contents of two JSP files:

File 1: test1.jsp

 <html><body>
 <% pageContext.setAttribute("ninetyNine", new Integer(99)); %>

 //1

 </body></html>

File 2: test2.jsp
REVIEW QUESTIONS 233

 The number is <%= pageContext.getAttribute("ninetyNine") %>

Licensed to Tricia Fu <tricia.fu@gmail.com>

Which of the following, when placed at line //1 in the test1.jsp file, will
allow the test2.jsp file to print the value of the attribute when test1.jsp
is requested? (Select one)

a <jsp:include page="test2.jsp" />

b <jsp:forward page="test2.jsp" />

c <%@ include file="test2.jsp" %>

d None of the above because objects placed in pageContext have the page
scope and cannot be shared with other components.

6. Consider the contents of two JSP files:

File 1: this.jsp

 <html><body><pre>
 <jsp:include page="that.jsp" >
 <jsp:param name="color" value="red" />
 <jsp:param name="color" value="green" />
 </jsp:include>
 </pre></body></html>

File 2: that.jsp

 <%
 String colors[] = request.getParameterValues("color");
 for (int i=0; i<colors.length; i++)
 {
 out.print(colors[i] + " ");
 }
 %>

What will be the output of accessing the this.jsp file via the following URL?
(Select one)

 http://localhost:8080/chapter12/this.jsp?color=blue

a blue

b red green

c red green blue

d blue red green

e blue green red

7. Consider the contents of two JSP files:

File 1: this.jsp

 <html><body>

 <%= request.getParameter("color") %>
234 CHAPTER 12 REUSABLE WEB COMPONENTS

 <jsp:include page="that.jsp" >
 <jsp:param name="color" value="red" />

Licensed to Tricia Fu <tricia.fu@gmail.com>

 </jsp:include>

 <%= request.getParameter("color") %>

 </body></html>

File 2: that.jsp

 <%= request.getParameter("color") %>

What will be the output of accessing the this.jsp file via the following URL?
(Select one)

 http://localhost:8080/chapter12/this.jsp?color=blue

a blue red blue

b blue red red

c blue blue red

d blue red null

8. Consider the contents of three JSP files:

File 1: one.jsp

 <html><body><pre>

 <jsp:include page="two.jsp" >
 <jsp:param name="color" value="red" />
 </jsp:include>

 </pre></body></html>

File 2: two.jsp

 <jsp:include page="three.jsp" >
 <jsp:param name="color" value="green" />
 </jsp:include>

File 3: three.jsp

 <%= request.getParameter("color") %>

What will be the output of accessing the one.jsp file via the following URL?
(Select one)

 http://localhost:8080/chapter12/one.jsp?color=blue

a red

b green

c blue

d The answer cannot be determined.
REVIEW QUESTIONS 235

Licensed to Tricia Fu <tricia.fu@gmail.com>

C H A P T E R 1 3

Creating JSPs with the

Expression Language (EL)
13.1 Understanding the Expression Language 237
13.2 Using EL operators 241
13.3 Incorporating functions with EL 244
13.4 Summary 249

13.5 Review questions 249

EXAM OBJECTIVES

 7.1 Given a scenario, write EL code that accesses the following implicit variables:

• pageScope, requestScope, sessionScope, and applicationScope
• param and paramValues, header and headerValues
• cookie, initParam and pageContext

(Section 13.1)
 7.2 Given a scenario, write EL code that uses the following operators:

• property access (the . operator) and collection access (the [] operator)
• arithmetic operators, relational operators, and logical operators

(Section 13.2)
 7.3 Given a scenario:

• write EL code that uses a function
• write code for an EL function
• configure the EL function in a tag library descriptor
236

(Section 13.3)

Licensed to Tricia Fu <tricia.fu@gmail.com>

INTRODUCTION

So far, we’ve examined JSP declarations, expressions, and scriptlets, along with the tags
needed to identify them. These are useful capabilities, but they present problems for
complex JSPs. First, the clutter of different tags can make reading and debugging code
a painful task. Second, these scripts still incorporate a great deal of business logic (Java)
within presentation logic (HTML).

The developers of the Java Standard Tag Library (JSTL) responded to this with an
Expression Language (EL) that depends less on Java and doesn’t use tags at all. Sun
added this language to the new JSP standard as an alternative to scripting. Since the
EL objective is the only new one in the 310-081 exam, and since there are nine more
questions than before, it’s a safe bet that you’ll see plenty of EL expressions on your
SCWCD exam.

We’ll begin by describing the role of EL and how it functions. Then, we’ll explain
the different operators available for manipulating variables. Finally, we’ll describe
functions in EL and explain how they relate to standard Java methods. We’ll present
code samples throughout and conclude the chapter with a set of review questions.

13.1 UNDERSTANDING THE
EXPRESSION LANGUAGE

The Expression Language isn’t a new set of XML tags or Java classes; it’s a self-contained
programming language complete with operators, syntax, and reserved words. Our job
as JSP developers is to create EL expressions that can be added to the servlet’s response.
Let’s start with the basics.

First, we’ll compare EL expressions with material we’ve already covered: JSP’s reg-
ular scripting expressions. We’ll discuss the similarities between the two, and how they
differ with regard to variables. Then, we’ll explore the many implicit objects available
in EL and how they enable us to access information outside the page.

13.1.1 EL expressions and JSP script expressions

An easy way to understand EL expressions is to compare them with traditional JSP
script expressions. Both enable you to insert dynamic information within a static pre-
sentation. For example, if you want to describe a changing quantity in your page, you
can use a JSP script expression like

The outside temperature is <%= temp %> degrees.

or, you can use EL

The outside temperature is ${temp} degrees.

Both statements produce the same output and the web container processes them in the
same way. That is, once it receives a request, it evaluates the expression, converts it to
UNDERSTANDING THE EXPRESSION LANGUAGE 237

a String, and inserts it into the response output stream.

Licensed to Tricia Fu <tricia.fu@gmail.com>

These expressions also allow you to update attributes of standard or custom tags.
To set the font of a given statement using a JSP expression, you can use

<FONT FACE=<%= font %>>This sentence uses the <%= font %> font.

or, with EL,

This sentence uses the ${font} font..

But there are two important differences that you need to keep in mind. The first is
obvious: all EL expressions begin with “${“ and end with “}”, while script expressions
are enclosed within tags. The second difference is subtle but important. It deals with
the variables that can be presented inside expressions.

With traditional scripting, it’s easy to declare a variable in a JSP. All you need are
<%! and %> tags:

<%! int JSPvariable = 100; %>.

The problem is that this code uses Java, and a major goal of EL is to remove Java from
JSPs. Therefore, EL expressions can’t use variables declared in scripts. For example, after
the above declaration, the statement

The JSPvariable is <%= JSPvariable %>

will tell you that the variable is 100, while

The JSPvariable is ${JSPvariable}

will return an undefined value. So, since EL can’t declare variables by itself, we need
other ways to create these placeholders. You can use tag libraries and JavaBean members,
but the easiest variables to access are the implicit variables provided by the JSP itself.

13.1.2 Using implicit variables in EL expressions

When writing servlets, you can use a number of methods, such as getServlet-
Context() and getSession(), to obtain information about the application. But
these methods are inappropriate for JSPs, where Java programming should be kept to
a minimum.

Instead, JSP designers retrieve information through implicit variables. This way,
you can directly access the results of the servlet methods instead of coding them your-
self. Implicit variables are very important to know—both for the exam and for prac-
tical JSP development. Table 13.1 lists them along with their descriptions.

Table 13.1 Implicit variables usable inside EL expressions

Name Description

pageContext Accesses the JSP’s regular implicit objects

pageScope A Map containing the page scope attributes
238 CHAPTER 13 CREATING JSPS WITH THE EXPRESSION LANGUAGE (EL)

continued on next page

Licensed to Tricia Fu <tricia.fu@gmail.com>

The pageContext variable gives you access to the implicit objects mentioned in
chapter 12, “Reusable web components,” such as application, session, and
request. To display the bufferSize of the page’s JSPWriter, use the expression

${pageContext.out.bufferSize}

or, to retrieve the request’s HTTP method, use this line of code:

${pageContext.request.method}

But because EL restrains you from invoking Java methods, you can’t use an expres-
sion like

${pageContext.request.getMethod()}

However, the following script expression will continue to work fine:

<%= request.getMethod() %>

The next four entries are easy to understand. They don’t give you direct access to the
actual page, ServletRequest, HttpSession, or ServletContext, but instead
return Maps that relate names of scope attributes to their values. For example, if you
add a totalPrice attribute to the session to handle a user’s multiple purchases, you can
display the value with the following expression:

${sessionScope.totalPrice}

Remember that you access ServletContext attributes through the applica-
tionScope variable, not the pageContext variable.

The param and paramValues variables allow you to retrieve input values from
the ServletRequest. The param variable is the result of invoking getParameter
(String name) with the name of the parameter, and it is displayed by

${param.name}

using EL. Similarly, paramValues uses the getParameterValues(String[]

requestScope A Map containing the request scope attributes

sessionScope A Map containing the session scope attributes

applicationScope A Map containing the application scope attributes

param A Map containing a request parameter String

paramValues A Map containing a request parameter String[]

header A Map containing a request header String

headerValues A Map containing a request header String[]

cookie A Map matching Cookie fields to a single object

Table 13.1 Implicit variables usable inside EL expressions (continued)

Name Description
UNDERSTANDING THE EXPRESSION LANGUAGE 239

name) method to return an array of values for a given name. Don’t worry; we’ll discuss
arrays in EL shortly.

Licensed to Tricia Fu <tricia.fu@gmail.com>

The header and headerValues variables work like param and param-
Values, except that they retrieve values from the request header. The following line
of code displays the accept field of an incoming header with EL:

${header.accept}

The final implicit variable, cookie, returns the result of the servlet’s getCook-
ies() method.

NOTE When trying to resolve a variable in an expression, such as x in ${x}, the
resolver will first examine the implicit variables. If it fails to find x, it will
look through attributes of the page, request, session, and applica-
tion scopes. If it still doesn’t find x, the resolver will return null.

We can now finish our discussion of variables with a short example. Listing 13.1 pre-
sents a JSP that combines scripts, forms, implicit variables, and EL expressions.

<html><body>
 Expression Language Variables
 <%! int x=4; %>
 <p>The script expression for x = <%= x %>.
 <p>The EL expression for x = ${x}.
 <form action="EL_Variables.jsp" method="GET">
 <p>What is x? <input type="text" size=2 name="num">
 <p><input type="submit">
 </form>
 <p>That's ${param.num == 4}!
</body></html>

The result is shown in figure 13.1. As you can see, the JSP receives an input parameter
and displays it as an EL variable. But for real processing, we need to do something with
these variables—transform them or combine them. For this, we need operators.

Listing 13.1 EL_Variables.jsp

Figure 13.1

HTML output from

EL_Variables.jsp
240 CHAPTER 13 CREATING JSPS WITH THE EXPRESSION LANGUAGE (EL)

Licensed to Tricia Fu <tricia.fu@gmail.com>

Quizlet
Q: How would you display a request’s URI with EL?
A: Insert ${pageContext.request.requestURI} into your JSP.

Although the requestScope variable allows you to access page attributes,
you need the pageContext variable to access the request itself.

Q: If result is a valid parameter name, what will make ${paramVal-
ues.result} a valid expression?

A: Since the paramValues variable returns a Map containing a
String[], you need to access an individual element of the array. Both
${paramValues.result[0]} and ${paramVal-
ues.result["0"]} will work, but ${paramVal-
ues.result.0} won’t.
Remember that both paramValues and headerValues return
Maps with String[].

13.2 USING EL OPERATORS

Now that we’ve shown how EL uses variables, we can examine the operators that com-
bine variables together. EL operators can be divided into four categories: property/col-
lection access operators, arithmetic operators, relational operators, and logical operators.
These should look familiar to those of you experienced in regular Java development.
But there are a few odd details that you should keep in mind.

13.2.1 EL operators for property and collection access

Property access operators allow you to access an object’s members, while collection
access operators retrieve elements of a Map, List, or Array. These operators are par-
ticularly useful for dealing with implicit variables that contain or collect information.
In EL, these operators are described by

• a.b—Returns the property of a associated with the identifier, b
• a[b]—Returns the value of a associated with the key or index, b

You’ve probably used these operators in your Java programming. They function simi-
larly in EL, but EL treats them interchangeably if b is a String. This means the fol-
lowing expressions produce the same result:

${header["host"]}
${header['host']}
${header.host}

In this case, header is a Map, so the header.get("host") method is invoked to
display the expression’s result. Similarly, headerValues.host is an Array whose
0th element is displayed with one of the following expressions:

${headerValues.host["0"]}
USING EL OPERATORS 241

${headerValues.host['0']}
${headerValues.host[0]}

Licensed to Tricia Fu <tricia.fu@gmail.com>

But because Arrays are accessed by integer, the “[]” operator cannot be interchanged
with the “.” operator. Both of the following expressions will cause a compilation error:

${headerValues.host.0]}
${headerValues.host."0"}

So, EL doesn’t quite treat property and collection access in exactly the same manner as
traditional Java. However, its arithmetic operators are very standard and shouldn’t
cause any surprises.

13.2.2 EL arithmetic operators

EL allows you to use numerical values with data types similar to those provided by the
java.math package. In particular, you can use Integer and BigInteger values
for fixed-point numbers, and Double and BigDecimal values for floating-point
numbers. The arithmetic operators available for these values are as follows:

• Addition: +

• Subtraction: –

• Multiplication: *

• Division: div and /

• Modulo division: mod and %

These operations invoke corresponding methods from java.lang.Math and
behave as you’d expect. But it’s important to remember the data type that results from
an operation. For example, the result of an operation between a fixed-point and float-
ing-point number is always a floating-point value. Similarly, an operation between a
low-precision value and a high-precision value, such as an Integer added to a Big-
Integer, will always result in a high-precision value.

Here are some examples of EL’s arithmetic operator usage. Note that “e” can be
used in floating-point values to represent exponential notation:

${2 * 3.14159} evaluates to 6.28318.
${6.80 + -12} evaluates to -5.2.
${24 mod 5} and ${24 % 5} evaluate to 4.
${25 div 5} and ${25/5} evaluate to 5.0.
${-30.0/5} evaluates to -6.0.
${1.5e6/1000000} evaluates to 1.5.
${1e6 * 1} evaluates to 1000000.0.

Along with numbers, Strings can be used in arithmetic operators as long as they can
be converted into numbers:

${"16" * 4} evaluates to 64.
${a div 4} evaluates to 0.0.
242 CHAPTER 13 CREATING JSPS WITH THE EXPRESSION LANGUAGE (EL)

${"a" div 4} produces a compilation error.

Licensed to Tricia Fu <tricia.fu@gmail.com>

We’ve seen how EL uses Strings and numbers, but there’s one data type that we
haven’t encountered yet. When comparing variables with relational or logical opera-
tors, EL produces boolean results that can be true or false.

13.2.3 EL relational and logical operators

EL’s relational operators are identical to those used in normal Java code. They include
the following:

• Equality: == and eq

• Non-equality: != and ne

• Less than: < and lt

• Greater than: > and gt

• Less than or equal: <= and le

• Greater than or equal: >= and ge

Relational expressions produce boolean variables that can be combined with the fol-
lowing logical operators:

• Logical conjunction: && and and

• Logical disjunction: || and or

• Logical inversion: ! and not

Because EL doesn’t allow use of Java control statements like if, for, and while,
there are only two ways we can use logical expressions. The first involves directly dis-
playing the expression’s boolean value. For example,

${8.5 gt 4} evaluates to true.

and

${(4 >= 9.2) || (1e2 <= 63)} evaluates to false.

EL’s conditional operator gives us a second way . In this case, the displayed expression
is based on a variable’s boolean value. The syntax is A ? B : C. If A has a true value,
then B will be the expression’s result. If A is false, then C will be used. Here are a few
examples of this operator:

${(5 * 5) == 25 ? 1 : 0} evaluates to 1.
${(3 gt 2) && !(12 gt 6) ? "Right" : "Wrong"} evaluates to "Wrong".
${("14" eq 14.0) && (14 le 16) ? "Yes" : "No"} evaluates to "Yes".
${(4.0 ne 4) || (100 <= 10) ? 1 : 0} evaluates to 0.

EL provides many operators for comparing and combining variables, but it rejects any
Java method within an expression. This makes it difficult to build custom operators
USING EL OPERATORS 243

such as traditional log or pow methods. But EL does allow you to invoke Java

Licensed to Tricia Fu <tricia.fu@gmail.com>

methods in another file as long as you reference them within a tag library. These
method references are called functions.

Quizlet
Q: What is the result of ${(10 le 10) && !(24+1 lt 24) ? "Yes" :

"No"} ?
A: The expression will evaluate to "Yes". The first expression is true since

10 equals 10, and the second expression is true since 25 isn’t less than
24. Therefore, the conjunction of the two statements is true, and the
first result, "Yes", will be displayed.

13.3 INCORPORATING FUNCTIONS WITH EL

Although EL functions can be complex to work with, they provide JSPs with complete
separation of business and presentation logic. Instead of calling Java methods with
scriptlets, these functions invoke methods by accessing their corresponding XML tags.
As you’ll see, this means that the page designer only needs the function names and the
tag descriptor’s URI in order to access the function within the JSP.

The process of inserting an EL function into a JSP involves creating or modifying
four files:

1 Method class (*.java)—Contains the Java methods that you want to use in your
JSP.

2 Tag library descriptor (*.tld)—Matches each Java method to an XML function
name.

3 Deployment descriptor (web.xml)—Matches the TLD to a tag library URI. (Note:
Changing this file is optional, but recommended.)

4 JavaServer Page (*.jsp)—Uses the tag library URI and function name to invoke
the method.

The best way to show how these files interact is to create our own EL functions. Since
these functions need to be matched to Java methods, we’ll begin by defining these
methods in a class.

13.3.1 Creating the static methods

The process of EL function development begins with creating the Java methods that will
be indirectly invoked by the JSP. Our example, shown in listing 13.2, contains two sim-
ple methods, upper() and length(), that perform common String operations.

package myFunc;

public class StrMethods {

Listing 13.2 myFunc.StrMethods.java
244 CHAPTER 13 CREATING JSPS WITH THE EXPRESSION LANGUAGE (EL)

 public static String upper(String x)

Licensed to Tricia Fu <tricia.fu@gmail.com>

 {
 return x.toUpperCase();
 }

 public static int length(String x)
 {
 return x.length();
 }

}

Remember these important points when creating methods for EL:

1 The methods need to be declared public and static. The class needs to be
public. This way, the servlet can access the class and its methods without cre-
ating a new object.

2 The method’s arguments and return value must be valid within EL. Otherwise,
the web container won’t recognize the method signatures.

3 The class file needs to be saved in the /WEB-INF/classes directory.

Creating a method class is straightforward—it’s regular Java. But getting the JSP to
access this code requires more work. In this case, you need to speak the JSP’s lan-
guage—XML. The XML file that makes this possible is called the tag library descriptor.

13.3.2 Creating a tag library descriptor (TLD)

You’ll have to wait for chapter 15, “Using custom tags,” for a full treatment on tag
libraries and their descriptor files, but we’ll present a brief introduction here. The goal
of the TLD is to map static methods into function names that you can use in your JSP.
This is necessary because EL won’t let you invoke Java methods.

In our example, the descriptor matches the upper() method to the function
name, upper, and matches the length() method to the function name, length.
This is shown in listing 13.3.

<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 web-jsptaglibrary_2_0.xsd"
 version="2.0">
 <tlib-version>1.0</tlib-version>
 <function>
 <name>upper</name>
 <function-class>myFunc.StrMethods</function-class>
 <function-signature>
 java.lang.String upper(java.lang.String)
 </function-signature>

Listing 13.3 Functions.tld
INCORPORATING FUNCTIONS WITH EL 245

 </function>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <function>
 <name>length</name>
 <function-class>myFunc.StrMethods</function-class>
 <function-signature>
 java.lang.int length(java.lang.String)
 </function-signature>
 </function>
</taglib>

The first two tags in listing 13.3, <taglib> and <tlib-version>, identify how
the rest of the file should be processed. We’ll cover these in greater depth in chapter 15.

The tags contained within <function> and </function> do the main work
of matching the functions to the Java methods. For each <function>, </func-
tion> pair, you need to provide three pieces of information:

1 The <name> and </name> tags contain the function names that will be used
in the JSP. In the example, these names are upper and length.

2 The <function-class> and </function-class> tags contain the fully
qualified name of the method class, which is myFunc.StrMethods.

3 The <function-signature> and </function-signature> tags iden-
tify a static method and the full data types of its arguments and return value.
These data types must be resolvable inside an EL expression.

This *.tld file is usually placed inside the /WEB-INF directory or a subdirectory
inside /WEB-INF. But since the container needs to know where the TLD is located,
we will modify the application’s deployment descriptor.

13.3.3 Modifying the deployment descriptor

One of the many functions of the deployment descriptor is to tell the web container
where to find TLDs. The web.xml file does this by matching the TLD’s actual loca-
tion with a unique URI that can be used throughout the application. This centralized
mapping means that we can move our TLDs from place to place, and only have to
make a single alteration to web.xml.

You don’t need to completely rewrite the deployment descriptor for this purpose,
but listing 13.4 shows where the TLD locator tags should be added.

<web-app>
 ...
 <servlet>
 …
 </servlet>
 …
 <taglib>

Listing 13.4 Modified web.xml
246 CHAPTER 13 CREATING JSPS WITH THE EXPRESSION LANGUAGE (EL)

 <taglib-uri>
 http://myFunc/Functions

Licensed to Tricia Fu <tricia.fu@gmail.com>

 </taglib-uri>
 <taglib-location>
 /WEB-INF/myFunc/Functions.tld
 </taglib-location>
 </taglib>
 …
</web-app>

The goal of this modification is to tell the web container that any servlet or JSP access-
ing the tag library with a URI of http://myFunc/Functions should be directed
to Functions.tld located at /WEB-INF/myFunc. This information is contained
within <taglib> and </taglib> tags, located directly beneath the descriptor’s
<web-app> and </web-app> tags. Two pieces of information need to be included:

1 The <taglib-uri> and </taglib-uri> tags contain a URI that will be
used in servlets and JSPs to access the library. This URI can be absolute (http://
...) or relative (/…).

2 The <taglib-location> and </taglib-location> tags contain the
context path of the tag library descriptor. Since our TLD is in the myFunc
directory inside WEB-INF, the location is given as /WEB-INF/myFunc/
Functions.tld.

So far, you’ve created a Java class with two static methods. You’ve created a TLD that
matches the methods to function names, and you’ve updated web.xml to match the
TLD’s location to a URI. With this accomplished, it’s time to finish the process by
building the JSP.

13.3.4 Accessing EL functions within a JSP

Once you’ve taken care of setting up the function names and TLD URI, calling the
function inside your JSP is very simple. The process has two steps:

1 Use the taglib directive to access the TLD and assign a prefix to represent the
tag library.

2 Create an EL expression using the TLD prefix and function name. Be sure to use
proper argument types.

This process is shown in listing 13.5. First, we assign the prefix, myString, to repre-
sent our TLD, whose location is determined by its URI. Then, to call the functions, we
use the expressions ${myString:upper()} and ${myString:length()} with
the String parameter received from the request.

<%@ taglib prefix="myString"
uri="http://myFunc/Functions"%>

Listing 13.5 Stringfun.jsp
INCORPORATING FUNCTIONS WITH EL 247

<html><body>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 Enter text:
 <form action="Stringfun.jsp" method="GET">
 <input type="text" name="x">
 <p><input type="submit">
 </form>
 <table border="1">
 <tr>
 <td>Uppercase:</td>

 <td>${myString:upper(param.x)}</td>
 </tr>
 <tr>
 <td>String length:</td>
 <td>${myString:length(param.x)}</td>
 </tr>
 </table>
</body></html>

Figure 13.2 shows how a browser displays the JSP. As
you can see, our custom function works just like a regu-
lar JSP action.

Before we finish our discussion on EL functions, we
need to mention one last item. If you set the URI attribute
of the taglib directive equal to the exact location of the
TLD, you don’t need to modify the deployment descrip-
tor. This saves work for simple web pages, but creates
complications for large enterprise applications. When you
have many JSPs accessing multiple TLDs, it helps to have
a central location for assigning URIs to file locations.
Therefore, we’ve updated web.xml to assign a URI to the
TLD’s file location.

Quizlet
Q: What is wrong with the following web.xml assignment?

 <taglib>
 <taglib-uri>
 http://myDir/File
 </taglib-uri>
 <taglib-directory>
 /WEB-INF/myDir/File.tlf
 </taglib-directory>
 </taglib>

A: Two things. First, the TLD file should have a *.tld suffix. Second, the
tags surrounding the TLD should be <taglib-location> and
</taglib-location>, not <taglib-directory> and

Figure 13.2 HTML output

from Stringfun.jsp
248 CHAPTER 13 CREATING JSPS WITH THE EXPRESSION LANGUAGE (EL)

</taglib-directory>.

Licensed to Tricia Fu <tricia.fu@gmail.com>

13.4 SUMMARY

To understand the many rules and constraints of the Expression Language, it is impor-
tant to remember its primary goal: to remove Java from JSP development. To meet this
goal, it has its own operators, syntax, and methodology of function calling. It serves as
a complete alternative to traditional declarations, expressions, and scriptlets.

If you are writing your own JSPs, you may want to continue using scripts. But, for
the new SCWCD exam, EL’s theory and implementation will be a very important
topic. Therefore, we strongly recommend that you become very familiar with its oper-
ators and rules. Since the exam will focus on the tricks and trivia behind EL, we further
recommend that you build and execute your own code to better see how its different
aspects work.

EL operators and implicit variables won’t present any problems for an experienced
programmer. The Expression Language provides essentially the same constructs for
property access, collection access, arithmetic, logic, and relational comparisons as C or
Java. It is important to remember that property access and collection access are essen-
tially the same thing in EL, and that EL numbers must be of the Integer, Big-
Integer, Double, or BigDecimal data types.

Function calling in EL, however, is a very new capability. You can invoke Java
methods from a JSP, but only through custom tags in a TLD. The process begins with
public static Java methods, which are mapped to function names in a tag library
descriptor (TLD). Then, the JSP accesses this TLD using its URI or actual file location,
and uses an assigned prefix to access the functions. The application’s deployment
descriptor can (and probably should) be used to centrally assign a URI to the TLD.

Although this chapter has touched on the process of tag library development, we’ve
only scratched the surface. As we will see, there is much more that we can do with cus-
tom tags and TLDs that call EL functions.

13.5 REVIEW QUESTIONS

1. Consider the following code and select the correct statement from the options below.

 <html><body>
 ${(5 + 3 + a > 0) ? 1 : 2}
 </body></html>

a It will print 1 because the statement is valid.
b It will print 2 because the statement is valid.
c It will throw an exception because a is undefined.
d It will throw an exception because the expression’s syntax is invalid.

2. Which statement best expresses the purpose of a tag library descriptor (TLD) in
an EL function?
REVIEW QUESTIONS 249

a It contains the Java code that will be compiled.
b It invokes the Java method as part of the JSP.

Licensed to Tricia Fu <tricia.fu@gmail.com>

c It matches the tag library with a URI.
d It matches function names to tags that can be used in the JSP.

3. Which of the following variables is not available for use in EL expressions?

a param

b cookie

c header

d pageContext

e contextScope

4. Which tags tell the web container where to find your TLD file in your filesystem?

a <taglib-directory></taglib-directory>

b <taglib-uri></taglib-uri>

c <taglib-location></taglib-location>

d <tld-directory></tld-directory>

e <taglib-name></taglib-name>

5. Which two of the following expressions won’t return the header’s accept field?

a ${header.accept}

b ${header[accept]}

c ${header['accept']}

d ${header["accept"]}

e ${header.'accept'}

6. When writing a TLD, which tags would you use to surround fnName(int
num), a Java method declared in a separate class?

a <function-signature></function-signature>

b <function-name></function-name>

c <method-class></method-class>

d <method-signature></method-signature>

e <function-class></function-class>

7. Which of the following method signatures is usable in EL functions?

a public static expFun(void)

b expFun(void)

c private expFun(void)

d public expFun(void)

e public native expFun(void)
250 CHAPTER 13 CREATING JSPS WITH THE EXPRESSION LANGUAGE (EL)

Licensed to Tricia Fu <tricia.fu@gmail.com>

C H A P T E R 1 4
Using JavaBeans
14.1 JavaBeans: a brief overview 252
14.2 Using JavaBeans with JSP

actions 258
14.3 JavaBeans in servlets 271

14.5 More about properties in
JavaBeans 276

14.6 Summary 280
14.7 Review questions 281
14.4 Accessing JavaBeans from
scripting elements 274
EXAM OBJECTIVES

 8.1 Given a design goal, create a code snippet using the following standard actions:

• jsp:useBean (with attributes: ‘id’, ‘scope’, ‘type’, and ‘class’);
• jsp:getProperty; and
• jsp:setProperty (with all attribute contributions)

(Sections 14.2 – 14.4)

INTRODUCTION

JavaBeans are independent software components that we can use to assemble other
components and applications. JSP technology uses standard tags to access JavaBeans
components, which allow us to encapsulate code, perform complex operations, and
leverage existing components to save time. In this chapter, we will give you a brief
overview of JavaBeans from the JSP perspective, and show you how they are used in
251

JSP pages.

Licensed to Tricia Fu <tricia.fu@gmail.com>

14.1 JAVABEANS: A BRIEF OVERVIEW

The JavaBeans component model architecture is both a specification and a framework
of APIs that supports a set of features that includes component introspection, proper-
ties, events, and persistence. Since it is platform independent, it enables us to write
portable and reusable components.

Components developed according to this specification are called beans. From a
developer’s perspective, a bean is a Java class object that encapsulates data in the form
of instance variables. These variables are referred to as properties of the bean. The class
then provides a set of methods for accessing and mutating its properties. The actual
strength of a bean as a reusable component lies in its ability to allow programmatic
introspection of its properties. This ability facilitates automated support for bean cus-
tomization using software programs called bean containers.

14.1.1 JavaBeans from the JSP perspective

In the JSP technology, the JSP engine acts as a bean container. Any class that follows
these two conventions can be used as a JavaBean in JSP pages:

• The class must have a public constructor with no arguments. This allows the
class to be instantiated as needed by the JSP engine.

• For every property, the class must have two publicly accessible methods, referred
to as the getter and the setter, that allow the JSP engine to access or mutate the
bean’s properties.

The name of the method that accesses the property should be getXXX() and the name of
the method that mutates the property should be setXXX(), where XXX is the name
of the property with the first character capitalized. Here are the signatures of the methods:
 public property-type getXXX();
 public void setXXX(property-type);

In the following getter and setter methods, the name of the property is color and its
data type is String:
 public String getColor();
 public void setColor(String);

Let’s look at a simple example of a Java class that can be used as a JavaBean in a JSP
page. In listing 14.1, the class AddressBean encapsulates the address information in
four private attributes and provides access to them via the corresponding setter and
getter methods.

public class chapter14.AddressBean
{
 //properties

Listing 14.1 A simple JavaBean class named AddressBean
252 CHAPTER 14 USING JAVABEANS

 private String street;
 private String city;

Licensed to Tricia Fu <tricia.fu@gmail.com>

 private String state;
 private String zip;

 //setters
 public void setStreet(String street){ this.street = street; }
 public void setCity(String city) { this.city = city; }
 public void setState(String state) { this.state = state; }
 public void setZip(String zip) { this.zip = zip; }

 //getters
 public String getStreet(){ return this.street; }
 public String getCity() { return this.city; }
 public String getState() { return this.state; }
 public String getZip() { return this.zip; }

}

Note that the name of our class AddressBean ends with the word Bean. Although
this is not a requirement, many developers like to follow this convention (UserBean,
AccountBean, etc.) to differentiate between JavaBean classes and ordinary classes,
thus making their intent clear to co-developers.

The rules for placing the bean classes are the same as for any other class, such as
servlets, utility classes, or third-party tools. They must be present in the classpath of
the web application—which means we can keep them directly in the /WEB-INF/
classes directory, or in a JAR file under the /WEB-INF/lib directory. Then, to
use these classes within the JSP pages, we have to import them via the import
attribute of the page directive.

14.1.2 The JavaBean advantage

Let’s look at an example of using the AddressBean class in a JSP page. In this exam-
ple, we want to capture the address information of visitors to our web site and main-
tain it during the lifetime of a session. Listing 14.2 shows an HTML page code with
an input form that will collect this information.

<html>
<body>
Please give your address:

 <form action="address.jsp">
 Street: <input type="text" name="street">

 City: <input type="text" name="city">

 State: <input type="text" name="state">

 Zip: <input type="text" name="zip">

 <input type="submit">

 </form>
</body>
</html>

Listing 14.2 addressForm.html
JAVABEANS: A BRIEF OVERVIEW 253

Licensed to Tricia Fu <tricia.fu@gmail.com>

When the user fills out the form and submits the page, we need to perform the fol-
lowing tasks on the server:

1 Check if an AddressBean object already exists in the session.

2 If not, create a new AddressBean object and add it to the session.

3 Call request.getParameter() for all the HTML FORM fields.

4 Set the respective values into the AddressBean object.

If there were no support from the JSP engine, we would have to code the above steps
in a scriptlet, as shown here:

 <%@ page import="chapter14.AddressBean" %>

 <%
 AddressBean address = null;

 synchronized(session)
 {
 //Get an existing instance
 address = (AddressBean) session.getAttribute("address");

 //Create a new instance if required
 if (address==null)
 {
 address = new AddressBean();
 session.setAttribute("address", address);
 }

 //Get the parameters and fill up the address object
 address.setStreet(request.getParameter("street"));
 address.setCity(request.getParameter("city"));
 address.setState(request.getParameter("state"));
 address.setZip(request.getParameter("zip"));

 }

 %>

However, the JSP specification defines standard actions that provide a convenient
means of handling HTML FORM input and sharing information across the JSP pages
using JavaBeans. The scriptlet code shown above can be replaced with the following
lines using the JavaBean and the standard JSP actions:

 <%@ page import="chapter14.AddressBean" %>
 <jsp:useBean id="address" class="AddressBean" scope="session" />
 <jsp:setProperty name="address" property="*" />

Shorter code is not the only incentive to use JavaBeans in JSP pages; JavaBeans also
help to increase code reusability. Suppose that after setting all the fields of the
AddressBean to the values retrieved from the request parameters we want to per-
sist this information into a database. We could write a scriptlet and include the logic
254 CHAPTER 14 USING JAVABEANS

of opening the database connection and saving the bean’s properties in that scriptlet.

Licensed to Tricia Fu <tricia.fu@gmail.com>

But what if this functionality is required by more than one JSP page? We have to
repeat the same scriptlet code in all the JSP pages. And then, what if the logic to
access the database changes? We have to modify all the affected pages to adapt to the
new database logic. However, if we build that logic into a method in the Address-
Bean class itself, then all the pages can use that method. Furthermore, if the database
access logic changes, only the AddressBean class and its method change; the JSP
pages remain unaffected.

Another advantage of using beans is that they are Java programming language
objects, which means we can fully utilize the object-oriented features provided by the
language. Let’s suppose the application needs to maintain two different types of
addresses: one for businesses and one for residences. We can have two separate beans,
BusinessAddressBean and ResidentialAddressBean, both derived from
a common base class, AddressBean. The base class can implement all the logic com-
mon to both beans, while the derived classes can handle the logic that is specific to each
bean independently.

14.1.3 Serialized JavaBeans

Usually, in an enterprise application we use some form of a database to store and
retrieve persistent data. For example, we can have a relational database with a table for
storing address information captured in our AddressBean when a visitor first goes
to the site. The same address information can be retrieved from the database when we
want to display the address at a later date. Storing JavaBean properties in a database is
one way of persisting JavaBeans. The JavaBeans specification also allows us to persist
JavaBeans in the file system as serialized objects.

A serialized bean is a bean instance that is converted into a data stream and stored
in a file so that its attributes and values are saved permanently and can be retrieved
later as required. The process of serialization is achieved using the standard Object Seri-
alization mechanism of Java. First, we make our bean class capable of being serialized
by implementing the java.io.Serializable interface.1 Then we can serialize the
individual bean instances by using the java.io.ObjectOutputStream class.

Serialized beans are considered to be resources and have the following requirements:

• The file that stores a serialized bean must have the extension .ser. For exam-
ple, we can serialize instances of the AddressBean class in files and name the
files after the person to which the address belongs, such as John.ser or
Mary.ser.

• The file that stores the bean must be present in the classpath of the web applica-
tion. Since the /WEB-INF/classes directory is always present in the
classpath of a web application, we can create and save all the beans in either

1 It can also done by implementing the java.io.Externalizable interface. Please see the JDK API
JAVABEANS: A BRIEF OVERVIEW 255

for more details.

Licensed to Tricia Fu <tricia.fu@gmail.com>

the /WEB-INF/classes directory or a subdirectory of the /WEB-INF/
classes directory. For example:

 /WEB-INF/classes/John.ser
 /WEB-INF/classes/businessData/visitorAddresses/Mary.ser

• The combination of the path and the filename that stores the bean is treated as
the name of the bean, similar to the way classes and packages are treated.

Thus, in the examples shown above, the names of the two serialized beans are John
and businessData.visitorAddresses.Mary. This is because /WEB-INF/
classes/ is in the classpath of the web application. If we also add the business-
Data directory to the classpath so that any file under <WEB-INF>/classes/
businessData is available as a resource, we can refer to Mary’s bean as visitor-
Addresses.Mary.

Once saved as serialized beans, these objects can be loaded in any Java program
using the java.beans.Beans.instantiate()2 method.

In the following example, we will assume that we have a directory structure called
/WEB-INF/classes/businessData/visitorAddresses/, and we will cre-
ate the serialized beans in that directory.

First, let’s make our AddressBean class serializable as follows:

 public class AddressBean implements java.io.Serializable
 {
 ...
 }

Listing 14.3, beanSaver.jsp, accepts the user’s name and address information in
the request parameter, creates an instance of AddressBean, and serializes it to a file
that is given the name of the user.

<%@ page import="chapter14.AddressBean, java.io.* " %>

<%
 String message="";

 try
 {

 //Create an instance. Set the properties
 AddressBean address = new AddressBean();
 address.setCity(request.getParameter("city"));
 address.setState(request.getParameter("state"));

 //Get the user's name to build the file path

Listing 14.3 beanSaver.jsp
256 CHAPTER 14 USING JAVABEANS

2 See the JDK documentation of the package java.beans for more details

Licensed to Tricia Fu <tricia.fu@gmail.com>

 String name = request.getParameter("name");

 String appRelativePath =
 "/WEB-INF/classes/businessData/visitorAddresses/"
 + name
 + ".ser";

 String realPath = application.getRealPath(appRelativePath);

 //Serialize the object into the file
 FileOutputStream fos = new FileOutputStream(realPath);
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(address);
 oos.close();

 message = "Successfully saved the bean as " + realPath;
 }
 catch(Exception e){
 message = "Error: Could not save the bean";
 }
%>
<html><body>
 <h3><%= message %></h3>
</body></html>

In this example, we first import the AddressBean class and the java.io pack-
age via the import attribute of the page directive. Then, we create an instance
of the AddressBean class and set its city and state properties as specified in
the request parameter. Next, using the value of the request parameter name,
we build the path to a filename. Finally, using the FileOutputStream and
ObjectOutputStream classes of the java.io package, we serialize the bean
into the file.

We can access the above page via the following URL:

 http://localhost:8080/chapter14/
 beanSaver.jsp?name=John&city=Topeka&state=Kansas

If all goes well, it will create a file named John.ser under the directory /WEB-INF/
classes/businessData/visitorAddresses and will print the message with
the filename on the browser window.

Thus, we can create as many serialized beans as we want with different sets of prop-
erty values as long as the names of the bean files are different. We can then use these
serialized beans in other components of the application.

In the following sections, we will explain the standard JSP actions that help us use
JavaBeans in JSP pages effectively.
JAVABEANS: A BRIEF OVERVIEW 257

Licensed to Tricia Fu <tricia.fu@gmail.com>

14.2 USING JAVABEANS WITH JSP ACTIONS

Table 14.1 summarizes the three standard actions for using JavaBeans in a JSP page.

In the sections that follow, we will describe each of these actions in details.

14.2.1 Declaring JavaBeans using <jsp:useBean>

The jsp:useBean action declares a variable in the JSP page and associates an
instance of a JavaBean with it. The association is a two-step process. First, the action
tries to find an existing instance of the bean. If an instance is not found, a new instance
is created and associated with the declared variable. We can customize the behavior of
this action using the five attributes shown in table 14.2.

Of the five attributes in table 14.2:

• The id attribute is mandatory.
• The scope attribute is optional.
• The three attributes class, type, and beanName can only be used in one of

the following four combinations, and at least one of these attributes or combi-
nations of attributes must be present in a useBean action:
• class

Table 14.1 Standard JSP actions for using JavaBeans

Action Description

<jsp:useBean> Declares the use of a JavaBean instance in a JSP page

<jsp:setProperty> Sets new values to the bean’s properties

<jsp:getProperty> Gets the current value of the bean’s properties

Table 14.2 <jsp:useBean> attributes

Attribute Name Description Examples

id The name by which the bean is identified in
the JSP page.

id="address"

scope The scope of the bean’s instance: page,
request, session, or application.
The default value is page.

scope="session"

class The Java class of the bean. class="BusinessAddress-
Bean"

type Specifies the type of the variable to be used to
refer to the bean.

type="AddressBean"

beanName The name of a serialized bean if we are loading
from a file or the name of a class if we are cre-
ating a new instance.

beanName="business
Data.John"
beanName="AddressBean"
258 CHAPTER 14 USING JAVABEANS

• type

Licensed to Tricia Fu <tricia.fu@gmail.com>

• class and type

• beanName and type

To make it easier to understand and remember the usage of these attributes, let’s first
examine their meaning in the following sections. Then, we will look at some examples
that will demonstrate how we can use the different combinations.

The id attribute

The id attribute uniquely identifies a particular instance of a bean. It is mandatory
because its value is required by the other JSP actions, <jsp:setProperty> and
<jsp:getProperty>, to identify the particular instance of the bean. In the gener-
ated Java servlet, the value of id is treated as a Java language variable; therefore, we can
use this variable name in expressions and scriptlets in the JSP page. Note that since the
value of the id attribute uniquely identifies a particular instance of a bean, we cannot
use the same value for the id attribute in more than one <jsp:useBean> action
within a single translation unit.

The scope attribute

The scope attribute specifies the scope in which the bean instance resides. Like
implicit objects, the existence and accessibility of JavaBeans from JSP pages are deter-
mined by the four JSP scopes: page, request, session, and application. This attribute is
optional, and if not specified, the page scope is used by default.

We cannot use the session scope for a bean in a JSP page if we set the value of the
page directive attribute session to false.

The class attribute

The class attribute specifies the Java class of the bean instance. If the <jsp:use-
Bean> action cannot find an existing bean in the specified scope, it creates a new
instance of the bean’s class as specified by the value of the class attribute using the
class’s publicly defined no-argument constructor. Therefore, the class specified by the
class attribute must be a public non-abstract class and must have a public no-
argument constructor. If the class is part of a package, then the fully qualified class
name must be specified as mypackage.MyClass.

The type attribute

The type attribute specifies the type of the variable declared by the id attribute.
Since the declared variable refers to the actual bean instance at request time, its type
must be the same as the bean’s class, or a superclass of the bean’s class, or an interface
implemented by the bean’s class. Again, if the class or the interface is part of a package,
then the fully qualified name must be specified as mypackage.MyClass.
USING JAVABEANS WITH JSP ACTIONS 259

Licensed to Tricia Fu <tricia.fu@gmail.com>

The beanName attribute

The beanName attribute specifies the name of a bean as expected by the instanti-
ate() method of the java.beans.Beans class. For this reason, beanName can
refer either to a serialized bean or to the name of a class whose instance is to be created.

If the beanName attribute refers to a serialized bean, then the bean is loaded from
the file that holds the bean. For example, if the attribute is specified as beanName=
"businessData.visitorAddresses.John", the bean is loaded from the file
businessData/visitorAddresses/John.ser. Note that we do not use the
extension .ser in the value for the beanName attribute.

If the beanName attribute refers to a class, the class is loaded into memory, an
instance of the class is created, and the instance is used as a bean. For example, if the
attribute is specified as beanName="chapter14.AddressBean", then the class
is loaded from the file chapter14/AddressBean.class. Note that we do not
use the extension .class in the value for the beanName attribute.

Both class and beanName can be used to create new instances from the speci-
fied class. However, the advantage of using beanName over class is that the value
of the beanName attribute can also be specified as a request-time attribute expression,
so it can be decided at request time and need not be specified at translation time.

Using the combinations of attributes

Now that we have introduced the five attributes of the <jsp:useBean> action, let’s
take a look at the way they are used in JSP pages.

A simple useBean declaration

This action uses three attributes—id, class, and scope—to declare the use of a
JavaBean:

 <jsp:useBean id="address" class="chapter14.AddressBean" scope="session" />

This informs the JSP engine that the variable that refers to the bean should be named
address and that the bean should be an instance of the AddressBean class. The
scope attribute specifies the bean’s scope as session.

At request time, if an object named address is already present in the session
scope, it is assigned to the variable address. Otherwise, a new object of class
AddressBean is created, which is then assigned to the variable and added to the ses-
sion. It is equivalent to the following code:

 chapter14.AddressBean address = (chapter14.AddressBean)
 session.getAttribute("address");
 if (address == null)
 {
 address = new chapter14.AddressBean ();
 session.setAttribute("address", address);
260 CHAPTER 14 USING JAVABEANS

 }

Licensed to Tricia Fu <tricia.fu@gmail.com>

The default scope

The following declaration uses only two attributes—id and class:

 <jsp:useBean id="address" class="chapter14.AddressBean" />

This is similar to the previous example, except that we have not specified the scope
attribute. In this case, the page scope is used by default. Thus, this bean is available
only in the JSP page in which it is defined and only for the request for which it is cre-
ated. It is equivalent to the following code:

 chapter14.AddressBean address = (chapter14.AddressBean)
 pageContext.getAttribute("address");

 if (address == null)
 {
 address = new chapter14.AddressBean();
 pageContext.setAttribute("address", address);
 }

The typecast problem

Suppose we have two classes, BusinessAddressBean and Residential-
AddressBean, both derived from a common base class, AddressBean. We have
two JSP pages, both declaring a bean with the same id value, but each with a different
class value, as shown here:

In residential.jsp:

 <jsp:useBean id="address"
 scope="session"
 class="chapter14.ResidentialAddressBean" />

In business.jsp:

 <jsp:useBean id="address"
 scope="session"
 class="chapter14.BusinessAddressBean" />

If the page residential.jsp is accessed first, its <jsp:useBean> action will
add an object of the ResidentialAddressBean class into the session scope with
the name address. Now, if the business.jsp page is accessed within the same
session, the <jsp:useBean> action of business.jsp will locate the address
object in the session scope and will try to cast it to the BusinessAddressBean
class. Since the two classes do not have a class-subclass relationship, it will raise a
java.lang.ClassCastException. Similarly, if the business.jsp page is
accessed first, then the <jsp:useBean> action in the residential.jsp page
will raise a java.lang.ClassCastException.
USING JAVABEANS WITH JSP ACTIONS 261

Licensed to Tricia Fu <tricia.fu@gmail.com>

Using the class and type attributes

The following declaration uses the class attribute as well as the type attribute:

 <jsp:useBean id="address"
 type="AddressBean"
 class="chapter14.BusinessAddressBean"
 scope="session" />

In this action, the variable named address that refers to the bean is declared of type
AddressBean. As we mentioned earlier, before creating an instance using the class
attribute, the engine looks for an existing bean by the name address in the session
scope. If an existing bean is found, then it is assigned to the address variable. Note
that, in this case, since the address variable is declared of type AddressBean,
the actual class of the existing instance may be AddressBean or any subclass of
AddressBean. Therefore, the actual class of the existing instance need not be of type
BusinessAddressBean.

However, if an existing instance is not found and a new instance has to be created,
then the value of the class attribute specifies that the actual instance of the bean that
is created must be of the BusinessAddressBean class. This useBean declaration
is equivalent to the following code:

 AddressBean address = (AddressBean)
 session.getAttribute("address");

 if (address == null)
 {
 address = new chapter14.BusinessAddressBean();
 session.setAttribute("address", address);
 }

If we do not explicitly specify the type attribute, it is considered to be the same as
class. The following two tags are equivalent:

 <jsp:useBean id="address"
 class="chapter14.BusinessAddressBean"
 scope="session" />

 <jsp:useBean id="address"
 type="BusinessAddressBean"
 class="chapter14.BusinessAddressBean"
 scope="session" />

Using serialized beans

In the following useBean declaration, the beanName attribute specifies the use of a
serialized bean, businessData.visitorAddresses.John:

 <jsp:useBean id="address"
 type="AddressBean"
 beanName="businessData.visitorAddresses.John"
262 CHAPTER 14 USING JAVABEANS

 scope="session" />

Licensed to Tricia Fu <tricia.fu@gmail.com>

In this case, the action first tries to locate an existing instance of the bean in the session
scope. If the bean is not found, then the action creates an instance and initializes it
with the serialized data present in the businessData/visitorAddresses/
John.ser file. This method of locating and creating a bean is equivalent to the fol-
lowing code:

 AddressBean address = (AddressBean)
 session.getAttribute("address");

 if (address == null)
 {
 ClassLoader classLoader = this.getClass().getClassLoader();

 address = (AddressBean)
 java.beans.Beans.instantiate(
 classLoader,
 "businessData.visitorAddresses.John");

 session.setAttribute("address", address);
 }

In the following useBean declaration, the beanName attribute specifies the name of
a class instead of a serialized bean:

 <jsp:useBean id="address"
 type="AddressBean"
 beanName="AddressBean"
 scope="session" />

Here, the action first tries to locate an existing instance of the bean in the specified
scope. If the bean is not found, the action creates an instance of the class specified by
the beanName attribute. This action is equivalent to the following:

 java.beans.Beans.instantiate(classLoader, "AddressBean");

Note that we do not specify the class attribute with the beanName attribute,
because the class of the bean is determined either by the bean’s serialized data itself or
by the value of the beanName attribute. But the type attribute is required in order
to determine the type of the declared variable. Thus, the value of the type attribute
must be same as the class of the bean, a superclass of the bean, or an interface imple-
mented by the bean.

Using a request-time attribute expression with the beanName attribute

Since the value of the beanName attribute can also be specified as a request-time
attribute expression, it can be useful in deciding the resource to be used as a bean at
request time. Consider the following example:

 <%@ page import="chapter14.AddressBean, java.io.*" %>
 <%
 String theBeanName = null;
USING JAVABEANS WITH JSP ACTIONS 263

 String name = request.getParameter("name");

Licensed to Tricia Fu <tricia.fu@gmail.com>

 if (name!=null && !name.equals(""))
 {
 theBeanName = "businessData.visitorAddresses. " + name;
 }
 else
 {
 //Name not specified.

 if ("Business".equals(request.getParameter("newType")))

 {
 theBeanName = "BusinessAddressBean";
 }
 else
 {
 theBeanName = "ResidentialAddressBean";
 }
 }
 %>

 <jsp:useBean id="address"
 type="AddressBean"
 beanName="<%= theBeanName %>" />

If the value of the request parameter name is John (or Mary), then the action will try
to locate a serialized file named businessData/visitorAddresses/John.ser
(or businessData/visitorAddresses/Mary.ser) in the classpath.

If the name request parameter is not specified, the useBean action will try to cre-
ate an instance of the BusinessAddressBean or ResidentialAddressBean
class, depending on the newType request parameter.

Notice that the type attribute in the action specifies the type as AddressBean.
This ensures that the code will work regardless of the actual type of the instance at
runtime. For example, the serialized bean of John may be of the type Business-
AddressBean, while that of Mary may be of the type ResidentialAddress-
Bean. This is true even for the new instances created based on the newType
parameter. Also, the import directive imports only one class, chapter14.
AddressBean. Since the two derived classes are used only within String literals,
we do not have to import them explicitly.

In either of the two cases, if the specified resource, serialized bean, or class is not
found, then a java.lang.InstantiationException is thrown.

Using the type attribute

The following action uses the type attribute without the class or beanName
attribute. This is useful if we want to locate an existing bean object but do not want
to create a new instance even if an existing instance is not available:

 <jsp:useBean id="address" type="AddressBean" scope="session" />

If the located object is not of type AddressBean, and if it is not a subtype of
264 CHAPTER 14 USING JAVABEANS

AddressBean, a ClassCastException is thrown. On the other hand, if the

Licensed to Tricia Fu <tricia.fu@gmail.com>

object could not be located in the specified scope at all, no new object is created and
a java.lang.InstantiationException is thrown.

Initializing bean properties

A limitation of using JavaBeans is that they are instantiated by the JSP engine using a
no-argument constructor. Because of this limitation, we cannot initialize the beans by
passing parameters to constructors. To overcome this, the JSP specification allows us
to provide a body for the <jsp:useBean> tag, as shown by this example:

 <jsp:useBean id="address" scope="session" class="AddressBean" >
 <%
 address.setStreet("123 Main St. ");
 %>
 </jsp:useBean>

The previous code conveys two things to the JSP engine:

1 If the bean named address is already present in the session scope, then the
JSP engine should skip the body of the <jsp:useBean> tag and use the bean
object as it is. In this case, the nested scriptlet code is not executed.

2 If the bean named address is not already present in the session scope, then
the JSP engine should create a new instance of the bean class AddressBean,
add the instance to the session scope with the name address, and execute the
body of the <jsp:useBean> tag before continuing. In this case, the nested
scriptlet code is executed, allowing us to set the street property to an initial
value of "123 Main St." each time the bean is instantiated.

It is the second point that gives us the ability to initialize newly created beans. In this
example, we have used a scriptlet to set the street property of the bean. However, a
cleaner way to initialize the properties is to use the <jsp:setProperty> action.
We will discuss this action in section 14.2.2.

In practice, in addition to initializing the bean, the body of the <jsp:useBean>
tag can be used to write any valid JSP code (HTML, scriptlets, expressions, and so
forth). Just remember that it is executed only when the <jsp:useBean> tag requires
that a bean be created.

Scope of the declared variable

When a <jsp:useBean> declaration is enclosed inside a Java programming lan-
guage block using scriptlets and a pair of curly braces, the scope of the variable declared
by the action also gets restricted to the enclosing block. Consider the following code,
which will not execute correctly:

 <%@ page language="java" import="AddressBean" %>
 <html><body>
USING JAVABEANS WITH JSP ACTIONS 265

 <%

Licensed to Tricia Fu <tricia.fu@gmail.com>

 if (true)
 {

 %>
 <jsp:useBean id="address" class="AddressBean" />
 <%
 }

 %>

 Some HTML here

 <%
 if (true)
 {

 out.print("Zip: "+ address.getZip()); //error here
 }
 %>

 </body></html>

In this example, the <jsp:useBean> declaration is enclosed inside a block using a pair
of curly braces. This marks the scope of the address variable declared by the action.
When this variable is used within the out.print() method, which is in a different
block, the compiler flags an error indicating that the address variable is not defined.

However, even though the address variable is out of scope because of the pair
of curly braces, the address bean is still reachable in the page scope. We can access
it by using the implicit variable pageContext:

 <%
 if (true)
 {

 AddressBean address = (AddressBean)
 pageContext.getAttribute("address");

 out.print("Zip: "+ address.getZip()); //ok

 }
 %>

If the <jsp:useBean> action specifies a different scope, such as the request, session,
or application scope, then we can use the corresponding implicit variable and the
getAttribute() method to access the declared bean in that scope.

14.2.2 Mutating properties using <jsp:setProperty>

The <jsp:setProperty> action assigns new values to the bean’s properties. It has
four attributes, as described in table 14.3.

Table 14.3 The <jsp:setProperty> attributes

Attribute Name Description

name The name by which the bean is identified in the JSP page

property The name of the property of the bean, which is to be given a new value
266 CHAPTER 14 USING JAVABEANS

continued on next page

Licensed to Tricia Fu <tricia.fu@gmail.com>

The name attribute

The name attribute identifies a particular instance of an existing bean. Therefore, the
name attribute is mandatory. The bean must have already been declared by a previous
<jsp:useBean> action, and the value of the name attribute must be the same as
the value of the id attribute specified by the <jsp:useBean> action.

The property attribute

The property attribute specifies the property of the bean to be set. The JSP engine
calls the setXXX() method on the bean based on the specified property. Thus, this
attribute is also mandatory.

The value attribute

The value attribute specifies the new value to be set for the bean’s property. This
attribute can also accept a request-time attribute expression.

The param attribute

The param attribute specifies the name of the request parameter. If the request con-
tains the specified parameter, then the value of that parameter is used to set the
bean’s property.

The value and param attributes are never used together and are both optional.
If neither of the two is specified, it is equivalent to having the same value for both
param and property, and the JSP engine searches for a request parameter with the
name that is same as the property attribute.

Let’s look at the following examples to understand how these attributes are used.
For each of the examples, assume that we have already declared the use of the bean
as follows:

 <%@ page import="chapter14.AddressBean" %>
 <jsp:useBean id="address" class="chapter14.AddressBean" />

Note that in all the examples below, we have shown the equivalent scriptlet code that
we can write instead of the standard actions, getProperty and setProperty.
The JSP engine, however, does not always translate these actions into such code. It uses
reflection to check if the bean has the specified properties and then calls the appropri-
ate methods.

value The new value to be assigned to the property

param The name of the parameter available in the HttpServletRequest, which
is to be assigned as a new value to the property of the bean

Table 14.3 The <jsp:setProperty> attributes (continued)

Attribute Name Description
USING JAVABEANS WITH JSP ACTIONS 267

Licensed to Tricia Fu <tricia.fu@gmail.com>

Using the value attribute

These two actions instruct the JSP engine to use the bean named address and set its
city and state properties to the values "Albany" and "NY", respectively:

 <jsp:setProperty name="address" property="city" value="Albany" />
 <jsp:setProperty name="address" property="state" value="NY" />

They are equivalent to the scriptlet code:

 <%
 address.setCity("Albany");
 address.setState("NY");
 %>

The following example uses a request-time expression for the value attribute:

 <% String theCity = getCityFromSomewhere(); %>

 <jsp:setProperty name="address"
 property="city"
 value="<%= theCity %>" />

Using the param attribute

In this case, instead of specifying the values using the value attributes, we have spec-
ified the request parameter names using the param attributes:

 <jsp:setProperty name="address" property="city" param="myCity" />
 <jsp:setProperty name="address" property="state" param="myState"/>

This instructs the engine to get the values of the myCity and myState request
parameters and set them to the "city" and "state" properties, respectively. Thus,
the above tags are equivalent to the following scriptlet code:

 <%
 address.setCity(request.getParameter("myCity"));
 address.setState(request.getParameter("myState"));
 %>

Using the default param mechanism

The technique of setting the properties shown in the previous example is used when
the names of the request parameters do not match the names of the bean properties.
If the names of the request parameters match the names of the bean properties, we do
not need to specify either the param or the value attribute, as shown here:

 <jsp:setProperty name="address" property="city" />
 <jsp:setProperty name="address" property="state" />

In this case, the bean properties are set using the corresponding values from the request
parameters. The above tags are equivalent to
268 CHAPTER 14 USING JAVABEANS

 <jsp:setProperty name="address" property="city" param="city" />
 <jsp:setProperty name="address" property="state" param="state" />

Licensed to Tricia Fu <tricia.fu@gmail.com>

These in turn are equivalent to the following scriptlet code:

 <%
 address.setCity(request.getParameter("city"));
 address.setState(request.getParameter("state"));
 %>

You might ask, “What if there is no such parameter in the request?” If the parameter
is not present in the request, or if it has a value of "" (empty string), the <jsp:set-
Property> action has no effect and the property retains its original value.

Setting all the properties in one action

The following is a shortcut to set all the properties of a bean in a single action:

 <jsp:setProperty name="address" property="*" />

Instead of setting each property of the address bean one by one, we can set all the
properties to the respective values present in the request parameters using a value of
"*" for the property attribute. The above tag is equivalent to the following script-
let code:

 <%
 address.setStreet(request.getParameter("street"));
 address.setCity(request.getParameter("city"));
 address.setState(request.getParameter("state"));
 address.setZip(request.getParameter("zip"));
 %>

Obviously, the names of the request parameters must match the names of the proper-
ties. As we mentioned earlier, if there is no matching parameter in the request for a
particular property, the value of that property remains unchanged. Also, in all the
above cases where we use the param attribute, if the request parameter has multiple
values, then only the first value is used.

14.2.3 Accessing properties using <jsp:getProperty>

The <jsp:getProperty> action is used to retrieve and print the values of the bean
properties to the output stream. The syntax of this action is quite simple:

 <jsp:getProperty name="beanInstanceName"
 property="propertyName" />

It has only two attributes, name and property, which are both mandatory. As in the
<setProperty> action, the name attribute specifies the name of the bean instance
as declared by a previous <jsp:useBean> action and the property attribute spec-
ifies the property whose value is to be printed.

The following actions instruct the JSP engine to print out the values of the state
and the zip properties of the address bean:
USING JAVABEANS WITH JSP ACTIONS 269

 <jsp:getProperty name="address" property="state" />
 <jsp:getProperty name="address" property="zip" />

Licensed to Tricia Fu <tricia.fu@gmail.com>

They are equivalent to the scriptlet code:

 <%
 out.print(address.getState());
 out.print(address.getZip());
 %>

The code in listing 14.4 locates an instance of AddressBean in the session scope and
prints out its properties in a tabular format.

<%@ page import="chapter14.AddressBean" %>
<jsp:useBean id="address" class="chapter14.AddressBean" scope="session"/>

<html><body>
<table>
 <tr>
 <td>Street</td>
 <td><jsp:getProperty name="address" property="street"/></td>
 </tr>
 <tr>
 <td>City</td>
 <td><jsp:getProperty name="address" property="city"/></td>
 </tr>
 <tr>
 <td>State</td>
 <td><jsp:getProperty name="address" property="state"/></td>
 </tr>
 <tr>
 <td>Zip</td>
 <td><jsp:getProperty name="address" property="zip"/></td>
 </tr>
</table>
</body></html>

Quizlet
Q: Consider the following code from a file named addressInput.jsp:

 <%@ page import="chapter14.AddressBean" %>

 <jsp:useBean id="address" class="chapter14.AddressBean"
 scope="request" />

 <jsp:setProperty name="address" property="*" />

 <jsp:forward page="addressDisplay.jsp" />

Can the addressDisplay.jsp file access the address bean
declared in the addressInput.jsp file and print its values using
<jsp:getProperty>?

Listing 14.4 addressDisplay.jsp
270 CHAPTER 14 USING JAVABEANS

Licensed to Tricia Fu <tricia.fu@gmail.com>

A: Yes, the page addressDisplay.jsp file can print the values of the
bean properties using <jsp:getProperty> provided it also contains
a <jsp:useBean> declaration that is identical to the one shown in
addressInput.jsp and that the declaration appears before the
<jsp:getProperty> declaration.

14.3 JAVABEANS IN SERVLETS

We know that JSP pages are converted into servlets at translation time, which means
that the beans that we use in our JSP pages are actually used from a servlet. This implies
that we can use JavaBeans from servlets, too. This section discusses the ways in which
we can share beans between JSP pages and servlets. The exam requires you to know the
servlet code that is equivalent to using beans in the different scopes: request, session,
and application.

Suppose a JSP page uses three beans, each with a different scope—request, session,
and application—declared as

 <jsp:useBean id="address1" class="chapter14.AddressBean"
 scope="request" />
 <jsp:useBean id="address2" class="chapter14.AddressBean"
 scope="session" />
 <jsp:useBean id="address3" class="chapter14.AddressBean"
 scope="application" />

Listing 14.5 shows how to achieve the same functionality in the servlet code.

import javax.servlet.*;
import javax.servlet.http.*;
import chapter14.AddressBean;

public class BeanTestServlet extends HttpServlet
{

 public void service(HttpServletRequest request,
 HttpServletResponse response)
 throws java.io.IOException,
 ServletException
 {

 AddressBean address1 = null;
 AddressBean address2 = null;
 AddressBean address3 = null;

 //Get address1 using the parameter request
 synchronized(request)
 {
 address1 = (AddressBean)
 request.getAttribute("address1");

Listing 14.5 Using JavaBeans in servlets
JAVABEANS IN SERVLETS 271

 if (address1==null)

Licensed to Tricia Fu <tricia.fu@gmail.com>

 {
 address1 = new AddressBean();
 request.setAttribute("address1", address1);
 }

 }

 //Get address2 using HttpSession
 HttpSession session = request.getSession();

 synchronized(session)
 {
 address2 = (AddressBean)
 session.getAttribute("address2");

 if (address2==null)
 {
 address2 = new AddressBean();
 session.setAttribute("address2", address2);
 }

 }

 // Get address3 using ServletContext
 ServletContext servletContext = this.getServletContext();

 synchronized(servletContext)
 {
 address3 = (AddressBean)
 servletContext.getAttribute("address3");

 if (address3==null)
 {
 address3 = new AddressBean();
 servletContext.setAttribute("address3", address3);
 }

 }

 }//service

}//class

This simple example demonstrated the use of the three container objects—Http-
ServletRequest, HttpSession, and ServletContext—that allow us to share
JavaBeans between servlets and JSP pages in the three scopes—request, session,
and application. An important point to remember here is that we have to syn-
chronize access to the three container objects because other servlets and JSP pages may
be accessing the same objects simultaneously in more than one thread. If we want to
use serialized beans from a servlet, we can use the following method:

 java.beans.Beans.instantiate(
 this.getClass().getClassLoader(),
272 CHAPTER 14 USING JAVABEANS

 "businessData.John");

Licensed to Tricia Fu <tricia.fu@gmail.com>

We will not discuss this method because you are not required to know its details for
the exam. Please refer to the API documentation for more information.

Quizlet
Q: Consider the following servlet code. How will you achieve the same

effect in a JSP page?

 AddressBean address;
 ServletContext servletContext =
 this.getServletContext ();

 synchronized(servletContext)
 {
 address = (AddressBean)
 servletContext.getAttribute("address");

 if (address==null)
 {
 address = new BusinessAddressBean();
 address.setCity("Greenwich");
 address.setState("Connecticut");
 servletContext.setAttribute("address", address);
 }
 }

A: You should notice four points about this code. First, the code uses
ServletContext to get and set the named object address. This
means that it uses the application scope. Second, if the object is not
found, the code creates a new instance of the class with the new keyword
and does not use the java.beans.Beans mechanism. This means we
should use the class attribute instead of the beanName attribute.
Third, the declared variable address is of type AddressBean, while
the new instance created is of type BusinessAddressBean. This
means that we must use the type attribute with AddressBean as its
value but that the class attribute must have BusinessAddress-
Bean as its value. Fourth, it sets two properties, city and state,
whenever the object address is not found in the application scope and
a new instance is created. This means we must initialize the bean
using <jsp:setProperty> tags within the opening and closing
<jsp:useBean> tags. Thus, it is equivalent to the following JSP code:

 <jsp:useBean id="address"
 type="AddressBean"
 class="chapter14.BusinessAddressBean"
 scope="application" >
 <jsp:setProperty name="address" property="city"
 value="Greenwich" />
 <jsp:setProperty name="address" property="state"
JAVABEANS IN SERVLETS 273

 value="Connecticut" />
 </jsp:useBean>

Licensed to Tricia Fu <tricia.fu@gmail.com>

14.4 ACCESSING JAVABEANS
FROM SCRIPTING ELEMENTS

As we have seen, one of the main advantages of using JavaBeans in JSP pages is that
they help to keep the code clean when they are used with the standard actions. How-
ever, JavaBeans can also be used in scripting elements. Say, for instance, that a bean has
some processing capabilities in addition to its normal function of holding a set of
properties. The bean may retrieve values from the database as it is initialized; in such
cases, it may have methods that are not, or cannot be, implemented as setters and get-
ters. For example, suppose we have a UserBean that stores user profiles, and we need
to set the login and password properties submitted by the user and then load the user
information from the database. The following code snippet shows how to do this:

 <%@ page import="chapter14.UserBean" %>

 <jsp:useBean id="user" class="chapter14.UserBean" scope="session">

 <jsp:setProperty name="user" property="login" />
 <jsp:setProperty name="user" property="password" />

 <%
 //The bean is used in a scriptlet here.
 //Load the user information from the database.
 user.initialize();
 %>

 </jsp:useBean>

Here, we first create an instance of the UserBean using the <jsp:useBean> action.
Then we set its login and password properties using the <jsp:setProperty>
action. But after that we want to initialize it using its initialize() method. Since
there is no standard JSP action that can be used to achieve this, we have to use a script-
let3 as shown above. Within the scriptlet, we can use the user variable to refer to the
bean instance since the <jsp:useBean> action declares it automatically.

Another reason for using beans in scriptlets and expressions is that the standard
action <jsp:getProperty> writes out the property value directly into the output
stream. It cannot be used for writing conditional logic or for passing it as a value to
an attribute. For example, suppose UserBean has a property, named login-
Status, which is set to true or false depending on whether the login attempt was
successful. We cannot use the <jsp:getProperty> action in an if condition to
test it. The following is not valid:

<%
 if (<jsp:getProperty //error here
 name="user"

3 We can also define and use custom tags to work with beans instead of scriptlets. Custom tags are ex-
274 CHAPTER 14 USING JAVABEANS

plained in chapters 15, 16, and 17.

Licensed to Tricia Fu <tricia.fu@gmail.com>

 property="loginStatus" />)
 {
 }
%>

Similarly, if UserBean has a property named preferredHomePage that stores a
URL to the user’s preferred home page, then <jsp:getProperty> cannot be
used to pass request-time values to the <jsp:forward> action. The following is
not valid:

 <jsp:forward page="<jsp:getProperty //error here
 name="user"
 property="preferredHomePage" />"
 />

In such cases, we have to use the bean in a scriptlet and an expression in this way:

 <% if (user.getLoginStatus()) { %>

 <jsp:forward page="<%=user.getPreferredHomePage()%>" />

 } else {

 <jsp:forward page="loginError.jsp" >

 <% } %>

Quizlet
Q: What is wrong with the following code?

 <jsp:useBean id="address"
 class="chapter14.AddressBean"
 beanName="businessData.visitorAddresses.John" />

A: We cannot use the attributes beanName and class in the same
<jsp:useBean> declaration.

Q: What is wrong with the following code?

 <jsp:setProperty name="address"
 param="state"
 value="FL" />

A: We have to use the mandatory attribute property to specify the prop-
erty of the bean. param specifies the request parameter whose value is
to be used. We cannot use the param and value attributes in the same
<jsp:setProperty> action.

Q: How can we get all of the properties of a bean in a single JSP action?
A: We can set all of the properties of a bean in a single action:

 <jsp:setProperty name="beanName" property="*" />

But there is no way to get all of the properties of a bean in a
ACCESSING JAVABEANS FROM SCRIPTING ELEMENTS 275

single action.

Licensed to Tricia Fu <tricia.fu@gmail.com>

14.5 MORE ABOUT PROPERTIES IN JAVABEANS

In the AddressBean example we have used throughout this chapter, all of the prop-
erties have been of type java.lang.String. However, a bean can have any type of
property, such as

• Primitive data types (int, char, boolean, etc.)

• Wrapper object types (java.lang.Integer, java.lang.Character,
java.lang.Boolean, etc.)

• Other object types

• Array types (int[], Integer[], etc.)

In this section, we will take a closer look at the way JSP pages manage these nonstring
data types in JavaBeans. To illustrate this in the short examples that follow, we will be
using a UserBean class that stores three different types of data:

 public class chapter14.UserBean{

 private int visits; //An example of primitive type
 private Boolean valid; //An example of wrapper type
 private char[] permissions; //An example of index type
 //appropriate setters and getters go here
 }

The visits variable counts the number of visits by this user. The valid property
indicates whether this bean instance has been initialized and is valid or not. Notice that
the permissions property is an array of char. Such properties are called indexed
properties. We will learn more about them in section 14.5.2.

14.5.1 Using nonstring data type properties

Request parameters are always of the type String. Hence, if we are expecting a value
that is of a type other than String, then we have to do the necessary conversions in
scriptlets before using the value. For example, the following scriptlet converts an
incoming request parameter from a String to an int and to an Integer:

 <%
 String numAsString = null;
 int numAsInt = 0;
 Integer numAsInteger = null;
 try{
 numAsString = request.getParameter("num");
 numAsInt = Integer.parseInt(numAsString);
 numAsInteger = Integer.valueOf(numAsString);
 }
 catch(NumberFormatException nfe){
276 CHAPTER 14 USING JAVABEANS

 }
 %>

Licensed to Tricia Fu <tricia.fu@gmail.com>

However, if a JavaBean has nonstring properties, then the standard JSP actions
<jsp:setProperty> and <jsp:getProperty> perform the necessary conver-
sions automatically, as explained below.

Automatic type conversion in <jsp:setProperty>

When we use literal values to set nonstring properties in a bean using the <jsp:set-
Property> action, the container performs the appropriate conversion from String
to the property type. For example, in the following actions, the engine converts the
literals 30 and true to int and Boolean, respectively:

 <jsp:setProperty name="user" property="visits" value="30" />
 <jsp:setProperty name="user" property="valid" value="true" />

These actions are equivalent to the following scriptlet:

 <%
 user.setVisits(Integer.valueOf("30").intValue());
 user.setValid(Boolean.valueOf("true"));
 %>

The type conversion occurs automatically even in the case of request parameters. For
example, if we do not specify any value in the <jsp:setProperty> action as
shown below but pass the values using a query string in the URL, the JSP engine
automatically performs the conversions:

 <jsp:setProperty name="user" property="visits" />
 <jsp:setProperty name="user" property="valid" />

This will work without errors when we call the JSP page using the following URL:

 http://localhost:8080/chapter14/test.jsp?visits=30&valid=true

However, if we use request-time attribute expressions in the <jsp:setProperty>
action, then no such automatic conversion happens. Consider the following:

 <%
 String anIntAsString = "30";
 String aBoolAsString = "true";
 %>

 <jsp:setProperty name="user"
 property="visits"
 value="<%= anIntAsString %>" />

 <jsp:setProperty name="user"
 property="valid"
 value="<%= aBoolAsString %>" />

This example will not compile because we have passed a request-time attribute expres-
sion value that evaluates to a String in both actions instead of an int and a Bool-
MORE ABOUT PROPERTIES IN JAVABEANS 277

ean, respectively. To make it work, we have to explicitly convert the values from a

Licensed to Tricia Fu <tricia.fu@gmail.com>

String to int for the visits property and from a String to a Boolean for the
valid property, as follows:

 <jsp:setProperty
 name="user"
 property="visits"
 value="<%= Integer.valueOf(anIntAsString).intValue() %>" />

 <jsp:setProperty
 name="user"
 property="valid"
 value="<%= Boolean.valueOf(aBoolAsString) %>" />

Automatic type conversion in <jsp:getProperty>

When we use nonstring data type properties of a bean in the <jsp:getProperty>
action, the action takes care of the conversion from the given type to String. For
example, the following actions use an int and a Boolean to print the values:

 <jsp:getProperty name="user" property="visits" />
 <jsp:getProperty name="user" property="valid" />

They are equivalent to the following scriptlet:

 <%
 out.print(user.getVisits()); //getVisits() returns int
 out.print(user.getValid()); //getValid() returns Boolean
 %>

14.5.2 Using indexed properties

Indexed properties can be used to associate multiple values to a single property. We can
set an indexed property in one of two ways:

• We can set it automatically from the request parameter.

• We can set it using a request-time expression and explicitly pass an array of the
desired type.

Setting an indexed property from request parameters

The following action sets the indexed property permissions to the values received
in the request parameter:

 <jsp:setProperty name="user" property="permissions" />

Suppose we access the JSP page with this URL:

 http://localhost:8080/chapter14/test.jsp?
 permissions=XYZ&permissions=PQR&permissions=L

The engine will create an array of chars with the length of the array equal to the num-
ber of request parameter values for the parameter named permissions. Since the
278 CHAPTER 14 USING JAVABEANS

URL specifies three values for permissions as permissions=XYZ&permis-
sions=PQR&permissions=L, it will create an array of three chars. Then, for

Licensed to Tricia Fu <tricia.fu@gmail.com>

each individual element of the char array, it will convert the parameter value from
String to char using String.charAt(0). Thus, the <jsp:setProperty>
action will use the values X, P, and L. It is equivalent to

 char charArr[] = new char[3];

 charArr[0] = (request.getParameterValues("permissions"))[0].charAt(0);
 // "XYZ".charAt(0)

 charArr[1] = (request.getParameterValues("permissions"))[1].charAt(0);
 // "PQR".charAt(0)

 charArr[2] = (request.getParameterValues("permissions"))[2].charAt(0);
 // "L".charAt(0)

Setting an indexed property

using request-time attribute expressions

The following action sets the indexed property permissions using a request-time
attribute expression:

 <%!
 char myPermissions[] = {'A', 'B', 'C' };
 %>

 <jsp:setProperty
 name="user"
 property="permissions"
 value="<%= myPermissions %>" />

This action is simple and will use the values A, B, and C.
The approaches we have discussed for setting indexed properties apply to all of the

data types. Whether they are String, primitive data types, wrapper objects, or other
objects, the parameter values are converted to their respective types for each individual
element of the array.

Getting indexed properties

When we get indexed properties from a bean using the <jsp:getProperty> action,
it is equivalent to calling out.print(property-type []), where property-
type is the data type of the indexed property. Consider the following example:

 <jsp:getProperty name="user" property="permissions" />

This is equivalent to the following scriptlet:

 <%
 out.print(user.getPermissions()); // getPermissions returns char[]
 %>

However, since an array in Java is considered to be an Object, the <jsp:getProp-
erty> action is not very useful for indexed properties; it simply prints the internal refer-
ence of the Object in memory. The output of the action might look something like this:
MORE ABOUT PROPERTIES IN JAVABEANS 279

char[]@0xcafebabe

Licensed to Tricia Fu <tricia.fu@gmail.com>

Thus, to print a particular property, or all the properties, we have to use script-
ing elements:

 <%
 char[] permissions = user.getPermissions();

 if (permissions != null)
 {

 for (int p = 0; p<permissions.length; p++)
 {
 %>

 Permission is <%= permissions[p] %>

 <%
 }
 }
 %>

Here we are using scriptlets to get the permissions, and we are using an expression to
print them.

14.6 SUMMARY

JSP technology is designed to take advantage of the power of JavaBeans components.
In this chapter, we discussed JavaBeans from the JSP developer’s point of view. We
noted the value they provide by reducing the code in JSP pages, thereby increasing the
readability of the pages. In JSP pages, any class can be used as a JavaBean as long as it
has a public constructor with no arguments and private properties that are accessed by
public getter and setter methods. The JSP specification provides the following standard
actions to use JavaBeans in JSP pages: <jsp:useBean>, <jsp:setProperty>,
and <jsp:getProperty>.

Servlets can also access JavaBeans objects. We reviewed the servlet code to access
JavaBeans in the different scopes, and we compared it with the equivalent JSP code.
At times, we need to access a JavaBean from scripting elements, so we discussed using
beans with scriptlets and expressions and under what circumstances we would do that.

Not all properties of JavaBean are of the type java.lang.String. We reviewed
the way that the <jsp:setProperty> and <jsp:getProperty> standard
actions handle using nonstring data types, and then we looked at indexed properties
and how they are managed in JSP pages.

With the end of this chapter, you should be ready to answer exam questions about
the way JavaBeans can be declared, initialized, and used in JSP pages as well as in serv-
lets and how the standard actions—<jsp:useBean>, <jsp:setProperty>,
and <jsp:getProperty>—help us to reduce the use of scriptlets and write cleaner
JSP pages.

Now that we have a good understanding of the standard tags, in the next chapter
280 CHAPTER 14 USING JAVABEANS

we will explore the use of custom tags in JSP pages.

Licensed to Tricia Fu <tricia.fu@gmail.com>

14.7 REVIEW QUESTIONS

1. Which of the following is a valid use of the <jsp:useBean> action? (Select one)

a <jsp:useBean id="address" class="chapter14.AddressBean" />
b <jsp:useBean name="address" class="chapter14.AddressBean"/>
c <jsp:useBean bean="address" class="chapter14.AddressBean" />
d <jsp:useBean beanName="address" class="chapter14.AddressBean" />

2. Which of the following is a valid way of getting a bean’s property? (Select one)

a <jsp:useBean action="get" id="address" property="city" />
b <jsp:getProperty id="address" property="city" />
c <jsp:getProperty name="address" property="city" />
d <jsp:getProperty bean="address" property="*" />

3. Which of the following are valid uses of the <jsp:useBean> action? (Select two)

a <jsp:useBean id="address" class="chapter14.AddressBean"
 name="address" />
b <jsp:useBean id="address" class="chapter14.AddressBean"
 type="AddressBean" />
c <jsp:useBean id="address" beanName="AddressBean"
 class="chapter14.AddressBean" />
d <jsp:useBean id="address" beanName="AddressBean"
 type="AddressBean" />

4. Which of the following gets or sets the bean in the ServletContext con-
tainer object? (Select one)

a <jsp:useBean id="address" class=" chapter14.AddressBean" />
b <jsp:useBean id="address" class="chapter14.AddressBean"
 scope="application" />
c <jsp:useBean id="address" class="chapter14.AddressBean"
 scope="servlet" />
d <jsp:useBean id="address" class="chapter14.AddressBean"
 scope="session" />
e None of the above

5. Consider the following code:

 <html><body>
 <jsp:useBean id="address" class="chapter14.AddressBean"
 scope="session" />
 state = <jsp:getProperty name="address" property="state" />
 </body></html>
REVIEW QUESTIONS 281

Which of the following are equivalent to the third line above? (Select three)

Licensed to Tricia Fu <tricia.fu@gmail.com>

a <% state = address.getState(); %>

b <% out.write("state = "); out.print(address.getState()); %>

c <% out.write("state = "); out.print(address.getstate()); %>

d <% out.print("state = " + address.getState()); %>

e state = <%= address.getState() %>

f state = <%! address.getState(); %>

6. Which of the options locate the bean equivalent to the following action?
(Select three)

 <jsp:useBean id="address" class="chapter14.AddressBean"
 scope="request" />

a request.getAttribute("address");
b request.getParameter("address");
c getServletContext().getRequestAttribute("address");
d pageContext.getAttribute("address",PageContext.REQUEST_SCOPE);
e pageContext.getRequest().getAttribute("address");
f pageContext.getRequestAttribute("address");
g pageContext.getRequestParameter("address");

7. Consider the following code for address.jsp:

 <html><body>
 <jsp:useBean id="address" class="chapter14.AddressBean" />
 <jsp:setProperty name="address" property="city" value="LosAngeles" />
 <jsp:setProperty name="address" property="city" />
 <jsp:getProperty name="address" property="city" />
 </body></html>

What is the output if the above page is accessed via the URL

 http://localhost:8080/chap14/address.jsp?city=Chicago&city=Miami

Assume that the city property is not an indexed property. (Select one)

a LosAngeles

b Chicago

c Miami

d ChicagoMiami

e LosAngelesChicagoMaimi

f It will not print anything because the value will be null or "".

8. Consider the following code:

 <html><body>

 <%{%>
282 CHAPTER 14 USING JAVABEANS

 <jsp:useBean id="address" class="chapter14.AddressBean"
 scope="session" />

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <%}%>

 //1

 </body></html>

Which of the following can be placed at line //1 above to print the value of the
street property? (Select two)

a <jsp:getProperty name="address" property="street" />
b <% out.print(address.getStreet()); %>

c <%= address.getStreet() %>

d <%= ((AddressBean)session.getAttribute("address")).getStreet() %>
e None of the above; the bean is nonexistent at this point.

9. Consider the following code:

 <html><body>

 <%{%>
 <jsp:useBean id="address" class="chapter14.AddressBean"
 scope="session" />
 <%}%>

 <jsp:useBean id="address" class="chapter14.AddressBean"
 scope="session" />
 <jsp:getProperty name="address" property="street" />

 </body></html>

Which of the following is true about the above code? (Select one)

a It will give translation-time errors.
b It will give compile-time errors.
c It may throw runtime exceptions.
d It will print the value of the street property.

10. Consider the following servlet code:

 //...

 public void service (HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 //1
 }

Which of the following can be used at //1 to retrieve a JavaBean named
address present in the application scope? (Select one)

a getServletContext().getAttribute("address");
REVIEW QUESTIONS 283

b application.getAttribute("address");

Licensed to Tricia Fu <tricia.fu@gmail.com>

c request.getAttribute("address",APPLICATION_SCOPE);
d pageContext.getAttribute("address",APPLICATION_SCOPE);

11. Consider the following code, contained in a file called this.jsp:

 <html><body>
 <jsp:useBean id="chapter14.address" class="AddressBean" />
 <jsp:setProperty name="address" property="*" />
 <jsp:include page="that.jsp" />
 </body></html>

Which of the following is true about the AddressBean instance declared in
this code? (Select one)

a The bean instance will not be available in that.jsp.
b The bean instance may or may not be available in that.jsp, depending on

the threading model implemented by that.jsp.
c The bean instance will be available in that.jsp, and the that.jsp page can

print the values of the beans properties using <jsp:getProperty />.
d The bean instance will be available in that.jsp and the that.jsp page can

print the values of the bean’s properties using <jsp:getProperty /> only if
that.jsp also contains a <jsp:useBean/> declaration identical to the one in
this.jsp and before using <jsp:getProperty/>.

12. Consider the following code contained in a file named this.jsp (the same as
above, except the fourth line):

 <html><body>
 <jsp:useBean id="address" class="chapter14.AddressBean" />
 <jsp:setProperty name="address" property="*" />
 <%@ include file="that.jsp" %>
 </body></html>

Which of the following is true about the AddressBean instance declared in
the above code? (Select one)

a The bean instance will not be available in that.jsp.
b The bean instance may or may not be available in that.jsp, depending on

the threading model implemented by that.jsp.
c The bean instance will be available in that.jsp, and the that.jsp page can

print the values of the bean’s properties using <jsp:getProperty />.
d The bean instance will be available in that.jsp, and the that.jsp page can

print the values of the bean’s properties using <jsp:getProperty /> only if
that.jsp also contains a <jsp:useBean/> declaration identical to the one in
this.jsp and before using <jsp:getProperty/>.
284 CHAPTER 14 USING JAVABEANS

Licensed to Tricia Fu <tricia.fu@gmail.com>

C H A P T E R 1 5
Using custom tags

15.1 Getting started 286
15.2 Informing the JSP engine about

a custom tag library 288

15.4 Using the JSP Standard Tag Library
(JSTL) 298

15.5 Summary 305

15.3 Using custom tags in JSP pages 293 15.6 Review questions 305
EXAM OBJECTIVES

 6.6 Configure the deployment descriptor to declare one or more tag libraries, deactivate
the evaluation language, and deactivate the scripting language.

 9.1 For a custom tag library or a library of Tag Files, create the ‘taglib’ directive for a
JSP page.
(Section 15.2)

 9.2 Given a design goal, create the custom tag structure in a JSP page to support
that goal.
(Sections 15.2, 15.3, and 15.4)

 9.3 Given a design goal, use an appropriate JSP Standard Tag Library (JSTL v1.1) tag
from the “core” tag library.
(Section 15.4)
285

Licensed to Tricia Fu <tricia.fu@gmail.com>

INTRODUCTION

As we saw in chapter 12, “Reusable web components,” and chapter 14, “Using Java-
Beans,” the JSP specification provides standard XML type tags, called JSP actions, that
instruct the JSP engine to take some action in a predefined manner.

Although very useful, the standard tags provide just a basic set of features. As your
web application grows, you will find that these standard JSP tags are somewhat restric-
tive and don’t provide support for the presentation logic that is required for formatting
dynamic data. For instance, you may be forced to write too much of your presentation
code in JSP scriptlets. Moreover, you may have to copy and paste those presentation
scriptlets onto multiple pages of the application. At this point, you need a way to put
that presentation logic in one place and reuse it wherever it is required. The JSP tech-
nology provides a feature that allows you to do just that. You can create new tags and
define their behavior according to your needs. These user-defined tags are called cus-
tom tags.

In addition, we’ll present a predeveloped set of tags that make up the “core” library
of the JSP Standard Tag Libarary (JSTL). Rather than build your own, you can use
these tags to perform flow control and conditional procesing in your JSP.

15.1 GETTING STARTED

Custom tags do not introduce any new syntax. They are similar to the standard JSP
actions and follow the same XML syntax format. In that sense, it may be more accurate
to refer to them as custom actions rather than tags. Custom tags allow us to move the
presentation logic outside the JSP pages into independent Java classes, thereby central-
izing the implementation of the presentation logic and increasing maintainability. By
using custom tags in JSP pages instead of scriptlets, we avoid duplicating the presenta-
tion logic; removing the scriptlets also makes the pages less cluttered and easier to read.

15.1.1 New terms

New concepts bring new terms. So let’s begin our foray into the world of custom tags
by becoming familiar with the terminology.

Tag handler

The JSP specification defines a tag handler as a runtime, container-managed object that
evaluates custom actions during the execution of a JSP page.

In practical terms, a tag handler is a Java class that implements one of two types
of interfaces. The first type contains the “Classic” tag interfaces—Tag, Iteration-
Tag, or BodyTag—and will be discussed in the following chapter. The second type
contains the “Simple” tag interface, SimpleTag, and will be presented in chapter 17.
For now, just remember that while executing a JSP file, if the JSP engine encounters
a custom tag, it calls the methods on the tag’s handler class to do the actual work.
286 CHAPTER 15 USING CUSTOM TAGS

Licensed to Tricia Fu <tricia.fu@gmail.com>

Tag library

The JSP specification defines a tag library as a collection of actions that encapsulate
some functionality to be used from within a JSP page.

Typically, we would not create just one tag to fulfill a particular requirement.
Rather, we would design and develop a set of custom tags that work together and help
solve a recurring requirement. Such a set of custom tags is called a tag library.

Tag library descriptor

When we use custom tags in a JSP page, the JSP engine needs to know the tag handler
classes for these tags, in which tag library they are located, and how are they used. This
meta-information is stored in a file called the tag library descriptor (TLD).

Types of URIs

In a JSP page, we reference the tag libraries through URIs. Table 15.1 describes the
three types of URIs that are used in a JSP page.

15.1.2 Understanding tag libraries

You don’t need to create your own tag libraries to handle many common functions. A
variety of custom tag libraries are available on the Internet that you can use in our JSP
pages. For example, the libraries provided by the Jakarta Apache Project at http://
jakarta.apache.org/taglibs contain several frequently used features, such as
text manipulation or date manipulation. Sun Microsystems has also developed a JSP
Standard Tag Library that we will discuss later in this chapter.

To use an existing tag library, you need to know two things:

• How to inform the JSP engine of the location of the TLD file of a tag library

Table 15.1 Types of URIs for referring to a tag library

Type Description Examples

Absolute URI A URI that has a protocol, a hostname,
and optionally a port number.

http://localhost:8080/taglibs
http://www.manning.com/taglibs

Root
Relative URI

A URI that starts with a / and that does
not have a protocol, a hostname, or
aport number. It is interpreted as rela-
tive to the document root of the web
application.

/helloLib
/taglib1/helloLib

Non-root
Relative URI

A URI that does not start with a / and
that does not have a protocol, a host-
name, or a port number. It is interpreted
as relative to either the currentJSP
page or the WEB-INF, depending on
where it is used.

HelloLib
taglib2/helloLib
GETTING STARTED 287

• How to use the custom tags provided by the tag library in JSP pages

Licensed to Tricia Fu <tricia.fu@gmail.com>

The exam objectives covered in this chapter focus on these two points.
However, if none of the existing libraries suits your needs and if you plan to imple-

ment a custom tag library on your own, you need to know two more things:

• How to implement the tag handlers for your tag library

• How to describe your tag library in a TLD file

We will discuss these two topics in the next chapter, where we will develop a sample
tag library.

15.2 INFORMING THE JSP ENGINE
ABOUT A CUSTOM TAG LIBRARY

In the JSP syntax, we can import a new tag library into a JSP page using a
taglib directive:

 <%@ taglib prefix="test" uri="sampleLib.tld" %>

If we are using the XML syntax, the library information in the JSP document is
included in the <jsp:root> element:

 <jsp:root
 xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:test="sampleLib.tld"
 version="2.0" >

 ...JSP PAGE...

 </jsp:root>

The above declarations inform the engine that the page uses custom tags with the pre-
fix test and that these tags are described in the file sampleLib.tld. In this exam-
ple, the value of the URI attribute provides a nonroot, or page-relative path, to the
TLD file. The JSP engine searches for the file in the same directory as the JSP page.

Though keeping all the JSP pages and the TLD files in the same directory is
the simplest way to use a taglib directive, it has two major drawbacks: security
and flexibility.

Let’s look at security first. Suppose the URL of the JSP page is http://
www.someserver.com/sample.jsp. A visitor can view the contents of your
library without much effort by typing the URL http://www.someserver.com/
sampleLib.tld.

Of course, we can configure the web server to restrict access to all the TLD files,
or better yet, we can put the TLD files under the /WEB-INF directory and use the
path /WEB-INF/sampleLib.tld to access them. However, we would still have
the problem of flexibility. If we wanted to switch to a newer version of the library, say
sampleLib_2.tld, then we would have to manually modify all the JSP pages that
are affected by this change. Further, third-party custom tag libraries are packaged and
288 CHAPTER 15 USING CUSTOM TAGS

shipped as JAR files. How would we indicate the location of a TLD file in such cases?

Licensed to Tricia Fu <tricia.fu@gmail.com>

To avoid such problems, JSP provides a cleaner solution for indicating the use of
tag libraries. The JSP container maintains a map between the URIs that we use in
taglib directives and the actual physical location of the TLD files in the file system.
With this approach, instead of using a page-relative path, we use an absolute URI path:

 <%@ taglib prefix="test"
 uri="http://www.someserver.com/sampleLib" %>

When the JSP engine reads the above URI, it refers to its internal map to find the cor-
responding TLD file location.

Thus, by creating a level of indirection, this approach solves both the security and
the flexibility problems. The actual TLD file can reside in the WEB-INF directory or
even in a JAR file, hidden away from the visitors. If a newer version is released, all we
have to do is update the mapping between the URI and the actual path.

NOTE The use of an absolute URL does not mean that the JSP engine will actually
download the TLD file or the tag library classes from the specified URL.
Thus, in the above example, the JSP engine will not try to locate the library
at http://www.someserver.com/sampleLib. Consider the URI as
just a name that is mapped to the actual location of the TLD file somewhere
on the local machine.

In the following sections, we will discuss the possible locations for TLD files, how the
mappings between the URIs and TLD locations are created, and how the JSP engine
interprets the different values of URIs specified in the taglib directives.

15.2.1 Location of a TLD file

A TLD file can reside in one of two types of places. First, it can be placed in any direc-
tory of a web application; for example:

 <docroot>/sampleLib.tld
 <docroot>/myLibs/sampleLib.tld
 <docroot>/WEB-INF/sampleLib.tld
 <docroot>/WEB-INF/myLibs/sampleLib.tld

We usually keep the TLD file in a directory, instead of a JAR file, during the develop-
ment of a tag library. This speeds up the development and testing cycles, during which
we design new tags, add new handler classes, and modify the TLD file frequently.
However, once development is finished, we package the handler classes and the TLD
file of the library as a JAR file. This file is then deployed under the <doc-root>/
WEB-INF/lib directory along with other jarred classes, such as servlets and third-
party tools.

The JSP specification mandates that, when deployed in a JAR file, a TLD file be
placed either directly under or inside a subdirectory of the META-INF directory. In
addition, the name of the TLD file must be taglib.tld. Thus, a JAR file containing
INFORMING THE JSP ENGINE ABOUT A CUSTOM TAG LIBRARY 289

a packaged tag library is typically structured like this:

Licensed to Tricia Fu <tricia.fu@gmail.com>

 myPackage/myTagHandler1.class
 myPackage/myTagHandler2.class
 myPackage/myTagHandler3.class
 META-INF/taglib.tld

The JSP container will recognize either of these two locations, a directory or a JAR, as
a path to a TLD file. This path is called the TLD resource path.

Let’s return for a moment to our discussion on the mapping between a URI and the
location of a TLD file. We can now see that this mapping is actually between a URI and
a TLD resource path, where the TLD resource path is either the path to the TLD file or
to the JAR file containing the TLD file. This mapping is referred to as the taglib map.

15.2.2 Associating URIs with TLD file locations

The JSP container populates the taglib map in three ways:

• First, the container reads the user-defined mapping entries present in the
deployment descriptor. This is called explicit mapping. We will learn how to add
new entries to the deployment descriptor in the next section.

• Then, the container reads all the taglib.tld files present in the packaged
JARs. For each jarred TLD file that contains information about its own URI, the
JSP container automatically creates a mapping between the specified URI and
the current location of the JAR file. This is called implicit mapping. We will
learn how to add the URI information to a TLD file in the next chapter, where
we will create a custom tag library.

• Finally, the JSP container adds entries for the URIs that are known to the con-
tainer by default. These URIs are called well-known URIs. The <jsp:root>
element of a JSP document contains an example of a well-known URI:

 http://java.sun.com/JSP/Page

The container itself provides the implementation for all the tags in this library. This is
actually another form of implicit mapping.

15.2.3 Understanding explicit mapping

We use the <taglib> element of the deployment descriptor file, web.xml, to asso-
ciate user-defined URIs with TLD resource paths. This is the syntax:

 <!ELEMENT taglib (taglib-uri, taglib-location)>

Each <taglib> element associates one URI with one location. It contains
two subelements:

• <taglib-uri>. This is the user-defined URI. Its value can be an absolute
URI, a root-relative URI, or a nonroot relative URI.

• <taglib-location>. This is the TLD resource path. Its value can be either
290 CHAPTER 15 USING CUSTOM TAGS

a root-relative URI or a nonroot relative URI, and it must point to a valid TLD
resource path.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Listing 15.1 illustrates the use of the <taglib> element in the deployment descriptor.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- other elements ... -->

 <!-- Taglib 1 -->

 <taglib>
 <taglib-uri>
 http://www.manning.com/studyKit
 </taglib-uri>
 <taglib-location>
 /myLibs/studyKit.tld
 </taglib-location>
 </taglib>

 <!-- Taglib 2 -->

 <taglib>
 <taglib-uri>
 http://www.manning.com/sampleLib
 </taglib-uri>
 <taglib-location>
 yourLibs/sample.jar
 </taglib-location>
 </taglib>

</web-app>

In listing 15.1, there are two <taglib> elements. The first <taglib> element asso-
ciates the URI http://www.manning.com/studyKit with the TLD resource
path /myLibs/studyKit.tld, while the second <taglib> element associates
the URI http://www.manning.com/sampleLib with the TLD resource path
yourLibs/sample.jar.

15.2.4 Resolving URIs to TLD file locations

Once the taglib mapping between the URIs and the TLD resource paths has been cre-
ated, the JSP pages can refer to these URIs using the taglib directives:

 <%@ taglib prefix="study" uri="http://www.manning.com/studyKit" %>
 <%@ taglib prefix="sample" uri="http://www.manning.com/sampleLib" %>

Listing 15.1 web.xml
INFORMING THE JSP ENGINE ABOUT A CUSTOM TAG LIBRARY 291

When the JSP engine parses a JSP file and encounters a taglib directive, it checks its
taglib map to see if a mapping exists for the uri attribute of the taglib directive:

Licensed to Tricia Fu <tricia.fu@gmail.com>

• If the value of the uri attribute matches any of the <taglib-uri> entries,
the engine uses the value of the corresponding <taglib-location> to
locate the actual TLD file.

• If the <taglib-location> value is a root-relative URI (that is, it starts
with a /), the JSP engine assumes the location to be relative to the web
application’s document root directory. Thus, the location for the URI
http://www.manning.com/studyKit in listing 15.1 will resolve to
the TLD file <doc-root>/myLibs/studyKit.tld.

• If the <taglib-location> value is a nonroot relative URI (that is, it
starts without a /), the JSP engine prepends /WEB-INF/ to the URI and
assumes the location to be relative to the web application’s document root
directory. Thus, the location for the URI http://www.manning.com/
sampleLib in listing 15.1 will resolve to the TLD path <doc-root>/
WEB-INF/yourLibs/sample.jar.

• If the value of the uri attribute of the taglib directive does not match any of
the <taglib-uri> entries, then the following three possibilities arise:

• If the specified uri attribute is an absolute URI, then it is an error and is
reported at translation time.

• If the specified uri attribute is a root-relative URI, it is assumed to be rela-
tive to the web application’s document root directory.

• If the specified uri attribute is a nonroot relative URI, it is assumed to be
relative to the current JSP page. Thus, if the JSP file <doc-root>/jsp/
test.jsp contains the directive <%@ taglib prefix="test"
uri="sample.tld" %>, the engine will expect to find the sam-
ple.tld file at <doc-root>/jsp/sample.tld.

Quizlet
Q: Consider the following taglib directive appearing in a JSP file. What

will happen if the URI used in this directive is not mapped to a TLD file
in the deployment descriptor?

 <%@ taglib uri="www.manning.com/hello.tld" prefix="a" %>

A: The URI www.manning.com/hello.tld does not contain a proto-
col; therefore, it is not an absolute URI. It does not start with a /, so it is
not a root-relative URI either. It is a page-relative URI. After failing to find
an entry in the map, the engine will search for the file hello.tld at the
location relative to the current page. Suppose the JSP page is at location

 C:\tomcat\webapps\chapter15\test.jsp

The engine will look for the file at
292 CHAPTER 15 USING CUSTOM TAGS

 C:\tomcat\webapps\chapter15\www.manning.com\hello.tld

Licensed to Tricia Fu <tricia.fu@gmail.com>

If it is unable to find hello.tld at this location either, it will flag
an error.

Q: What is wrong with the following taglib declaration?

 <taglib>
 <taglib-uri>http://myLibs.com</taglib-uri>
 <taglib-location>http://yourLibs.com</taglib-location>
 </taglib>

A: The value of <taglib-location> cannot be an absolute URI.

15.2.5 Understanding the prefix

As we discussed in chapter 11, “The JSP technology model—the basics,” each standard
JSP action tag has a tag name that is made up of two parts, a prefix and an action, sep-
arated by a colon. For example, in <jsp:include> and <jsp:forward>, the pre-
fix is jsp, while the actions are include and forward, respectively. Custom tags
use the same syntax:

 <myPrefix:myCustomAction>

Since we can use multiple libraries in one JSP page, the prefix differentiates between
tags that belong to different libraries. For example:

 <%@ taglib prefix="compA" uri="mathLibFromCompanyA" %>
 <%@ taglib prefix="compB" uri="mathLibFromCompanyB" %>

 <!-- Uses a tag from Company A -->
 <compA:random/>

 <!-- Uses a tag from Company B-->
 <compB:random/>

In the above code snippet, the prefixes compA and compB enable the JSP engine to
identify the libraries to which the tags belong.

In order to avoid conflicts between the user-defined tags and the standard tags pro-
vided by the JSP implementations, there are certain restrictions on the value of the
prefix attribute. For example, we cannot use jsp as a prefix for custom tag libraries
because it is already used as a prefix for standard actions, such as <jsp:include>,
<jsp:forward>, and <jsp:useBean>.

In addition to jsp, the specification has reserved the following prefix values, which
means we cannot use them in a taglib directive: jspx, java, javax, servlet,
sun, and sunw. Thus, the following directive is invalid:

 <%@ taglib prefix="sun" uri="myLib" %>

15.3 USING CUSTOM TAGS IN JSP PAGES

In section 15.2, we learned how to import custom tags using a taglib directive.
USING CUSTOM TAGS IN JSP PAGES 293

Now, we will see how to use different types of custom tags in a JSP page. These
types include:

Licensed to Tricia Fu <tricia.fu@gmail.com>

• Empty tags

• Tags with attributes

• Tags with JSP code

• Tags with nested tags

To illustrate the usage of these tag types, we have used the tags of a sample tag library
in the following sections. We will learn how to build these tags in the next chapter.

15.3.1 Empty tags

Empty tags do not have any body content. They are written in two ways. They can
consist of a pair of opening and closing tags without anything in between:

 <prefix:tagName></prefix:tagName>

They can also be formatted as a single self-tag:

 <prefix:tagName />

The self-tag has a forward slash / at the end of the tag.
In listing 15.2, we have an empty tag named required that embeds the character

* in the output HTML. This tag is useful while accepting <FORM> input from users.

 <%@ taglib uri="sampleLib.tld" prefix="test" %>

 <html>
 Please enter your address and click submit.

 The fields marked with a <test:required /> are mandatory.

 <form action="validateAddress.jsp">
 <table>

 <tr>
 <td><test:required /> Street 1</td>
 <td><input TYPE='text' NAME='street1'></td>
 </tr>

 <tr>
 <td> Street 2</td>
 <td><input TYPE='text' NAME='street2'></td>
 </tr>

 <tr>
 <td> Street 3</td>
 <td><input TYPE='text' NAME='street3'></td>
 </tr>

 <tr>
 <td><test:required/> City </td>
 <td><input TYPE='text' NAME='city'></td>

Listing 15.2 Usage of an empty tag
294 CHAPTER 15 USING CUSTOM TAGS

 </tr>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <tr>
 <td><test:required/> State </td>
 <td><input TYPE='text' NAME='state'></td>
 </tr>

 <tr>
 <td><test:required /> Zip </td>
 <td><input TYPE='text' NAME='zip'></td>
 </tr>

 </table>

 <input TYPE='submit' >

 </form>
 </html>

Figure 15.1 shows the output of listing 15.2 in a browser.

Although simple, this tag is quite useful. The page author does not have to scatter
* everywhere in the JSP page. In addition, if
you decide later on that you want to use a different color for the * or you want to use
an image instead of *, you can just modify the tag handler class and the change will
be reflected application-wide without modifying any JSP page.

15.3.2 Tags with attributes

Just like standard tags, custom tags can have attributes. In our sample library, we have
a tag named greet that prints the greeting Hello in the output. It accepts an
attribute named user to print the user’s name:

 <html><body>

Figure 15.1

A JSP page using

the required tag
USING CUSTOM TAGS IN JSP PAGES 295

 <%@ taglib prefix="test" uri="sampleLib.tld" %>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <h3><test:greet user="john" /></h3>

 </body></html>

When used this way, it will print the user’s name in the greeting as Hello john! in
the browser.

In the same way that standard tags may have attributes that are mandatory,
attributes for custom tags also may be defined as mandatory. If we do not specify the
mandatory attributes, the JSP engine flags an error at translation time. On the other
hand, if we do not specify the nonmandatory attributes, the tag handler uses the
default values. The default values depend on the implementation of the tag handler.
The attribute values can be either constants or JSP expressions:

 <prefix:tagName attrib1="fixedValue"
 attrib2="<%= someJSPExpression %>"
 attrib3= ...
 />

The expressions are evaluated at request time and passed to the corresponding tag han-
dler. Instead of passing a string literal john, we can use a JSP expression to make it
more flexible:

 <html><body>
 <%@ taglib prefix="test" uri="sampleLib.tld" %>

 <h3>
 <test:greet
 name='<%= request.getParameter("username") %>'
 />
 </h3>
 </body></html>

Thus, attributes to a tag are like parameters to a method call. The tag designer can cus-
tomize the behavior of a tag by specifying attributes and values. However, we cannot
pass in any arbitrary attribute-value pairs. As we will see in the next chapter, the tag
library designer defines the following in a TLD file:

• A set of valid attributes names

• Whether or not an attribute is mandatory

• The data type of the values

• Whether the value of an attribute has to be specified at translation time using a
string literal or if it can be specified as a request-time expression

15.3.3 Tags with JSP code

A tag may contain JSP code enclosed within the opening and closing tags. This code
is called the body content of the tag. It can be any valid JSP code, which means it can
be text, HTML, a scriptlet, an expression, and so forth. Our sample library has a tag
296 CHAPTER 15 USING CUSTOM TAGS

named if that accepts a Boolean attribute. It either includes the body in the output
or skips the body altogether based on the value of the attribute passed:

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <html><body>
 <%@ taglib uri="sampletaglib.tld" prefix="test" %>

 <test:if condition="true">
 Anything that is to be printed when the condition is true goes here.
 Name is: <%= request.getParameter("name") %>
 </test:if>

 </body></html>

In the above code, the <test:if> tag is passed a value of true for the attribute
condition. It executes the body of the tag, and the contents are included in the out-
put. If we set the value of the condition attribute to false, it will skip the body
and the contents will not be included in the output.

15.3.4 Tags with nested custom tags

Nonempty tags can also include other custom tags in their body. These types of tags
are called nested tags. In our sample library, we have three tags—<switch>, <case>,
and <default>—that help us write switch-case statements in JSP pages:

 <html><body>
 <%@ taglib uri="sampleLib.tld" prefix="test" %>

 <test:switch conditionValue='<%= request.getParameter("action") %>' >

 <test:case caseValue="sayHello">
 Hello!
 </test:case>

 <test:case caseValue="sayGoodBye" >
 Good Bye!!
 </test:case>

 <test:default>
 I am Dumb!!!
 </test:default>

 </test:switch>

 </body></html>

In the above code, the <case> and <default> tags are nested inside the <switch>
tag. Depending on the value of the conditionValue attribute, the body of an
appropriate case tag executes.

Note that the opening and closing tags of a nested tag and its enclosing tag cannot
overlap. The following is syntactically incorrect:

<test:tag1>
 <test:tag2>
</test:tag1>
 </test:tag2>
USING CUSTOM TAGS IN JSP PAGES 297

Licensed to Tricia Fu <tricia.fu@gmail.com>

15.4 USING THE JSP STANDARD TAG LIBRARY (JSTL)

Now that you’re familiar with the process of incorporating tag libraries into your JSPs,
we can present a freely available tag library as an example. This section will cover
Sun’s latest version (1.1) of its JSTL. This library consists of a number of sublibraries,
each of which provides tags for a specific group of functions. Specifically, these subli-
braries include

• core—Tags for general purpose processing

• xml—Tags for parsing, selecting, and transforming XML data

• fmt—Tags for formatting data for international use

• sql—Tags for accessing relational databases

• functions—Tags for manipulating Strings and collections

All of these are useful, but the SCWCD exam only requires that you understand the
tags in the core library. The tags in this library are both very useful and easy to integrate
into JSPs. Once again, the new SCWCD exam includes this material to provide an
alternative to adding scripts (declarations, expressions, and scriptlets) to your pages.

But before we investigate what tags are included in the core library, we need to
show you how to add the JSTL library within your Tomcat installation. This won’t
be tested, but it will enable you to code and execute the examples in this section.

15.4.1 Acquiring and installing the JSTL

There are two JAR files that provide JSTL capabilities to JSPs. The first, jstl.jar,
provides the API classes for the library. The second, standard.jar, provides the
library’s implementation classes. Tomcat 5.0 holds both, but they’re hiding in the exam-
ples. To acquire them, copy the two libraries from

C:\jakarta-tomcat-5.0.25\webapps\jsp-examples\WEB-INF\lib

and add them to the lib directory within your application’s WEB-INF folder.
Because you’ve added these files to the lib directory, you don’t need to update your

deployment descriptor. The container will find them automatically. But you do need
to reference the library in your JSP by using the taglib directive. Here’s an example:

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>

This will allow you to reference JSTL tags of the core library by using the prefix c.
Now that you know how to incorporate the core library into your page and access

its tags, we can describe what they do. Sun classifies them into four categories, and
table 15.2 lists them and their tags.

We’ll start with by describing the tags in the first category.
298 CHAPTER 15 USING CUSTOM TAGS

Licensed to Tricia Fu <tricia.fu@gmail.com>

15.4.2 General purpose JSTL tags: <c:catch> and <c:out>

The first two core tags, <c:catch> and <c:out>, make it possible to perform Java
processing without using JSP scripts. The first tag allows you to catch processing errors
within the JSP instead of bringing up an error page. The second functions similarly to
the JSP expression script, and makes its contents available for display.

Normally, any exceptions thrown within a JSP will be sent to the error page. How-
ever, you may want to perform different error-handling routines for different actions
within the page. The <c:catch> tag won’t perform these routines by itself, but it
will store the thrown exception within a variable named by the var attribute. Here’s
an example:

<c:catch var="e">
 actions that might throw an exception
</c:catch>

If the code between the tags throws an exception, its value will be stored in a variable
named e, which has page scope. Otherwise, e will be removed if it existed.

The second tag in this category, <c:out>, is even simpler to use. It functions just
like the JSP script expression, represented by <%= and />. It has one required
attribute, value, and the tag functions by displaying the value of value. An example
is shown here:

<c:out value="${number}" />

This example will display the value of the number expression within the page.
This tag is simple to use and understand, but you should remember two points.

Table 15.2 JSTL tags categorized by function

JSTL tag category JSTL tags Tag descriptions

General purpose <c:catch> Catches exceptions within a variable

<c:out> Displays contents within the page

Variable support <c:set> Sets the value of an EL variable

<c:remove> Removes an EL variable

Flow control <c:if> Alters processing according to an attribute equaling a value

<c:choose> Alters processing according to an attribute equaling a set
of values

<c:forEach> Repeats processing for each object in a collection

<c:forTokens> Performs processing for each substring in a given text field

URL handling <c:url> Rewrites URLs and encodes their parameters

<c:import> Accesses content outside the web application

<c:redirect> Tells the client browser to access a different URL
USING THE JSP STANDARD TAG LIBRARY (JSTL) 299

First, if the value attribute contains a <, >, ', ", or & character, the tag will display

Licensed to Tricia Fu <tricia.fu@gmail.com>

the corresponding character code, such as > for >. Second, you can specify a
default value if the attribute’s variable hasn’t been initialized. This is done with a
second attribute called default, which isn’t required. This is shown in the follow-
ing line:

<c:out value="${color}" default="red" />

Just as the <c:out> tag can be used in place of JSP script expressions, we need tags
that replace declarations. For this, the core library provides variable support tags.

15.4.3 Variable support JSTL tags: <c:set> and <c:remove>

Although the EL can manipulate variables in a number of ways, it can’t set their value
or remove them from scope. But with the core library’s <c:set> and <c:remove>
tags, you can perform these operations without resorting to JSP scripts.

The first tag in this category, <c:set>, can be used to set the values of both vari-
ables and objects, such as JavaBeans and Map instances. Also, the values can be spec-
ified from within the tag or inside its body content.

To use <c:set> with a variable, you need to specify the variable’s name with the
var attribute. Then, you can specify its value either with a value attribute or use
the tag’s body content. For example, the two tags

<c:set var="num" value="${4*4}" />

and

<c:set var="num">
 ${8*2}
</c:set>

both set the value of the num variable to 16. The second method allows you to insert
tag operations within the <c:set> tags. For example,

<c:set var="num">
 <c:out value="${8+8}" />
</c:set>

will accomplish the same result as the two preceding examples.
Along with setting the values of variables, the <c:set> tags also allow you to work

with JavaBeans and java.util.Map objects. The only difference is that the two
methods use different attributes. When setting JavaBeans and Maps, you specify the
object’s name with the target attribute and its property (the JavaBean’s member vari-
able or the Map’s key) with the property attribute. To set the property’s value, you
can use the value attribute or the body content, just as you can with setting variables.

For example, if you want to set the zipcode property of a JavaBean object called
customer1, you can use

<c:set target="customer1" property="zipcode">
 55501
300 CHAPTER 15 USING CUSTOM TAGS

</c:set>

Licensed to Tricia Fu <tricia.fu@gmail.com>

or

<c:set target="customer1" property="zipcode" value="55501">

The tag usage for Map objects is similar, except that the property attribute reflects
the name of one of the Map’s entries.

The <c:remove> tag is used to remove a variable from its scope. You specify the
variable’s name with the required var attribute, and its scope with the optional
scope attribute. If scope isn’t specified, then the container will look first at the
page, then the request, then the session, and finally the application scope.

As a simple example, you can remove the num variable from the session scope with
the following tag:

<c:remove var="num" scope="session" />

Unlike <c:set>, the <c:remove> tag can’t be used with JavaBeans or Map objects.

15.4.4 Flow control JSTL: <c:if>, <c:choose>,

<c:forEach>, and <c:forTokens>

Most Java classes incorporate some form of flow control to change processing accord-
ing to a variable’s value. Using for and while statements, you can control how
many times a task should be repeated. With if and switch-case statements, you
can control which task should be performed. Before JSP 2.0, the only way to control
page processing was to use scriptlets. But JSTL provides four tags—<c:if>,
<c:choose>, <c:forEach>, and <c:forTokens>—that provide flow control
without JSP scripts.

Conditional processing with JSTL

The first two tags, <c:if> and <c:choose>, function very similarly to regular Java’s
if and switch-case statements. One important difference is that there is nothing
like an else tag in the core library. Another is that each of these tags requires an
attribute called test, which you need to set equal to a boolean expression. For exam-
ple, the following code will only display the value of x if it’s equal to 9:

<c:if test="${x == ‘9’}">
 ${x}
</c:if>

It’s important to notice the single quotes surrounding the variable’s test value. These
must be present for the container to recognize the comparison.

The <c:choose> tag doesn’t take any attributes by itself, but contains a number
of <c:when> tags that perform separate comparisons with their test attributes. For
example, the following code displays different text based on the color variable:

<c:choose>
 <c:when test="${color == 'white'}">
 Light!
USING THE JSP STANDARD TAG LIBRARY (JSTL) 301

 </c:when>
 <c:when test="${color == 'black'}">

Licensed to Tricia Fu <tricia.fu@gmail.com>

 Dark!
 </c:when>
 <c:otherwise>
 Colors!
 </c:otherwise>
</c:choose>

Just as Java’s switch statement can contain a default entry when none of its
other conditions are met, JSTL provides an optional <c:otherwise> tag as the
default option.

JSTL iteration

The core library’s <forEach> and <forTokens> tags allow you to repeat process-
ing of the tag’s body content. Using these tags, you can control the number of itera-
tions in three ways:

• with a range of numbers: using <forEach> and its begin, end, and step
attributes

• with the elements in a Java collection: using <forEach> and its items
attribute

• with the tokens in a String: using <forEach> and its items attribute

The first method of iteration is very straightforward, and works like the traditional
Java for loop. First, the <forEach> tag creates a variable specified by its var
attribute. Then, it initializes the variable to its begin value and continues processing
body content until the variable equals end. The following JSP counts from 0 to 30 and
displays every third number:

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>
<html><body>
 <c:forEach var="x" begin="0" end="30" step="3">

 ${x}
 </c:forEach>
</body></html>

The <forEach> tag can also be used to iterate over the elements of a Java collection
object, such as a Vector, List, or Map. This tag processes its body content once for
each element, and you can access these elements by using the var attribute. The fol-
lowing code cycles through the elements of numArray and sets their values to 100:

<c:forEach var="num" items="${numArray}">
 <c:set var="num" value="100" />
</c:forEach>

In the <forTokens> tag, the items attribute is a String made up of tokens sep-
arated by delimiters. If you think of this String as a collection of substrings, then
you’ll see how closely it resembles the previous <c:forEach> usage. For example,
Tokens.jsp in code listing 15.3 creates a table and populates its cells with the
302 CHAPTER 15 USING CUSTOM TAGS

tokens of numlist.

Licensed to Tricia Fu <tricia.fu@gmail.com>

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>
<html><body>
 <c:set var="numList" value="one,two,three,four,five,six" />
 Output of the forTokens tag:<p>
 <table border="1">
 <c:forTokens var="num" items="${numList}" delims=",">
 <tr><td>${num}</td></tr>
 </c:forTokens>
 </table>
</body></html>

The result is shown in figure 15.2.
In this code, the delims attribute tells the con-

tainer to tokenize items by commas. Then, each
token is placed in its own table row and cell. Again,
it’s important to remember the basics of HTML for
the SCWCD exam.

Accessing URL information with JSTL

The last category of tags in the core library deals
with URL accessing. The three main tags are

• <c:url>, which rewrites URLs and encodes
their parameters

• <c:import>, which accesses content out-
side the web application, and

• <c:redirect>, which tells the client browser to access a different URL

If the client’s browser doesn’t accept cookies, then you need to rewrite the URL to
maintain session state. The core library provides <c:url> for this purpose. You spec-
ify the base URL with the value attribute, and the transformed URL is displayed by
the JspWriter or saved to a variable named by the optional var attribute.

A simple example is

 <c:url value="/page.html" var="pagename"/>

You can also specify the scope of var with an optional scope attribute, whose values
include page, request, session, and application.

Since the value parameter starts with a forward slash, the tag inserts the name of
the context before the URL. For example, the value of var in the preceding line of
code would be

/contextname/page.html

Listing 15.3 Tokens.jsp

Figure 15.2 A JSP showing the

result of the <c:forTokens> tag
USING THE JSP STANDARD TAG LIBRARY (JSTL) 303

if the browser accepts cookies. If the container doesn’t find a cookie with the current ses-
sion, it will rewrite the URL with its session ID number. In this case, the result would be

Licensed to Tricia Fu <tricia.fu@gmail.com>

/contextname/page.html;jsessionid=jsessionid

You can also specify the context with the optional context attribute. If value
doesn’t start with a forward slash, no context name will be added.

You can also add parameters to the URL by using the <c:param> tag in the body
of <c:url>. The following code shows how this is done:

<c:url value="/page.html" var="pagename">
 <c:param name="param1" value="${2*2}"/>
 <c:param name="param2" value="${3*3}"/>
</c:url>

The parameters within the <c:param> tag are specified by their name and value
attributes. If the browser accepts cookies, the value of the var attribute would be

/contextname/page.html?param1=4¶m2=9

The tag processing will encode the URL and its parameters as needed.
You can access URLs with the include directive, but if you want to incorporate

content located outside the servlet container, you need the <c:import> tag. This tag
adds content to the JSP referenced by the url attribute. The URL can be relative or
absolute, but if it begins with a forward slash, it is treated as absolute within the appli-
cation. You can set the URL’s context with the context attribute.

As with <c:url>, you can save the imported content within a variable specified
by the var attribute. You can also set the variable’s scope with the scope attribute,
or control its encoding with charEncoding. Finally, just as with the <c:url> tag,
you can add parameters to the URL with <c:param> tags in the <c:import> body.

The following example creates a variable called newstuff and sets it equal to the
content of the content.html URL. In accessing the URL, the <c:import> tag
appends two parameters, par1 and par2.

<c:import url="/content.html" var="newstuff" scope="session">
 <c:param name="par1" value="val1"/>
 <c:param name="par2" value="val2"/>
</c:import>

The last (and simplest) tag in this category is <c:redirect>. This tag functions
identically to the HttpServletResponse’s sendRedirect() method. It sends
a redirect response to the client and tells it to access the URL specified by the url
attribute. As with the <c:url> and <c:import> tags, you can specify the URL’s
context with context and add parameters with <c:param> tags.

The code snippet that follows provides an example of how the <c:redirect>
tag directs processing to a new URL:

<c:redirect url="/content.html">
 <c:param name="par1" value="val1"/>
304 CHAPTER 15 USING CUSTOM TAGS

 <c:param name="par2" value="val2"/>
</c:redirect>

Licensed to Tricia Fu <tricia.fu@gmail.com>

The JSTL library provides many more tags than those in the core library, but these
should be sufficient to perform most of the processing tasks normally accomplished by
JSP scripts. With these tags, you can perform flow control, manipulate and access
URLs, and set and display values of JSP variables. You should keep these tags and the
JSTL in mind, both for the SCWCD exam and for general JSP development.

15.5 SUMMARY

Custom tags are action elements on JSP pages that are mapped to tag handler classes
in a tag library. Tag libraries allow us to use independent Java classes to manage the
presentation logic of the JSP pages, thereby reducing the use of scriptlets and leverag-
ing existing code to accelerate development time. In this chapter, we learned the basic
terms and usage of tag libraries, including how to explicitly associate a URI with a TLD
file using the <taglib> element in the deployment descriptor.

We discussed the use of the taglib directive to import custom tags into a JSP
page. Then we examined several different types of custom tags that we use in JSP pages:
empty tags, tags with attributes, tags with a body, and tags that contain nested tags.

You should now be able to answer exam questions about the declaration of a tag
library in the deployment descriptor, the various ways of importing a custom tag library
for use in JSP pages, and the use of different types of custom tags in JSP pages.

In the next chapter, we will learn more about the TLD file and how to implement
our own custom tags.

15.6 REVIEW QUESTIONS

1. Which of the following elements are required for a valid <taglib> element in
web.xml? (Select two)

a uri

b taglib-uri

c tagliburi

d tag-uri

e location

f taglib-location

g tag-location

h tagliblocation

2. Which of the following web.xml snippets correctly defines the use of a tag
library? (Select one)

a <taglib>

 <uri>http://www.abc.com/sample.tld</uri>
 <location>/WEB-INF/sample.tld</location>
REVIEW QUESTIONS 305

 </taglib>

Licensed to Tricia Fu <tricia.fu@gmail.com>

b <tag-lib>

 <taglib-uri>http://www.abc.com/sample.tld</taglib-uri>
 <taglib-location>/WEB-INF/sample.tld</taglib-location>
 </tag-lib>

c <taglib>

 <taglib-uri>http://www.abc.com/sample.tld</taglib-uri>
 <taglib-location>/WEB-INF/sample.tld</taglib-location>
 </taglib>

d <tag-lib>

 <taglib>http://www.abc.com/sample.tld</taglib-uri>
 <taglib>/WEB-INF/sample.tld</taglib-location>
 </tag-lib>

3. Which of the following is a valid taglib directive? (Select one)

a <% taglib uri="/stats" prefix="stats" %>
b <%@ taglib uri="/stats" prefix="stats" %>
c <%! taglib uri="/stats" prefix="stats" %>
d <%@ taglib name="/stats" prefix="stats" %>
e <%@ taglib name="/stats" value="stats" %>

4. Which of the following is a valid taglib directive? (Select one)

a <%@ taglib prefix="java" uri="sunlib"%>
b <%@ taglib prefix="jspx" uri="sunlib"%>

c <%@ taglib prefix="jsp" uri="sunlib"%>

d <%@ taglib prefix="servlet" uri="sunlib"%>

e <%@ taglib prefix="sunw" uri="sunlib"%>

f <%@ taglib prefix="suned" uri="sunlib"%>

5. Consider the following <taglib> element, which appears in a deployment
descriptor of a web application:

 <taglib>
 <taglib-uri>/accounting</taglib-uri>
 <taglib-location>/WEB-INF/tlds/SmartAccount.tld</taglib-location>
 </taglib>

Which of the following correctly specifies the use of the above tag library in a
JSP page? (Select one)

a <%@ taglib uri="/accounting" prefix="acc"%>
b <%@ taglib uri="/acc" prefix="/accounting"%>
c <%@ taglib name="/accounting" prefix="acc"%>
d <%@ taglib library="/accounting" prefix="acc"%>
e <%@ taglib name="/acc" prefix="/accounting"%>
306 CHAPTER 15 USING CUSTOM TAGS

Licensed to Tricia Fu <tricia.fu@gmail.com>

6. You are given a tag library that has a tag named printReport. This tag may
accept an attribute, department, which cannot take a dynamic value. Which
of the following are correct uses of this tag? (Select two)

a <mylib:printReport/>

b <mylib:printReport department="finance"/>

c <mylib:printReport attribute="department" value="finance"/>

d <mylib:printReport attribute="department"

 attribute-value="finance"/>

e <mylib:printReport>

 <jsp:attribute name="department" value="finance" />
 </mylib:printReport>

7. You are given a tag library that has a tag named getMenu, which requires an
attribute, subject. This attribute can take a dynamic value. Which of the fol-
lowing are correct uses of this tag? (Select two)

a <mylib:getMenu />

b <mylib:getMenu subject="finance"/>

c <% String subject="HR";%>

 <mylib:getMenu subject="<%=subject%>"/>

d <mylib:getMenu> <jsp:param subject="finance"/> </mylib:getMenu>

e <mylib:getMenu>

 <jsp:param name="subject" value="finance"/>
 </mylib:getMenu>

8. Which of the following is a correct way to nest one custom tag inside another?
(Select one)

a <greet:hello>

 <greet:world>
 </greet:hello>
 </greet:world>

b <greet:hello>

 <greet:world>
 </greet:world>
 </greet:hello>

c <greet:hello

 <greet:world/>
 />

d <greet:hello>

 </greet:hello>
 <greet:world>
 </greet:world>
REVIEW QUESTIONS 307

Licensed to Tricia Fu <tricia.fu@gmail.com>

9. Which of the following elements can you use to import a tag library in a JSP
document? (Select one)

a <jsp:root>

b <jsp:taglib>

c <jsp:directive.taglib>

d <jsp:taglib.directive>

e We cannot use custom tag libraries in XML format.

10. Using c to represent the JSTL library, which of the following produces the same
result as <%= var %> ? (Select one)

a <c:set value=var>

b <c:var out=${var}>

c <c:out value=${var}>

d <c:out var="var">

e <c:expr value=var>

11. Which attribute of <c:if> specifies the conditional expression? (Select one)

a cond

b value

c check

d expr

e test

12. Which of the following JSTL forEach tags is valid?

a <c:forEach varName="count" begin="1" end="10" step="1">

b <c:forEach var="count" begin="1" end="10" step="1">

c <c:forEach test="count" beg="1" end="10" step="1">

d <c:forEach varName="count" val="1" end="10" inc="1">

e <c:forEach var="count" start="1" end="10" step="1">

13. Which tags can be found in a JSTL choose? (Select two)

a case

b choose

c check

d when

e otherwise
308 CHAPTER 15 USING CUSTOM TAGS

Licensed to Tricia Fu <tricia.fu@gmail.com>

C H A P T E R 1 6

Developing “Classic”
custom tag libraries

16.1 Understanding the tag library

descriptor 310
16.2 The Tag Extension API 318
16.3 Implementing the Tag interface 320
16.4 Implementing the IterationTag

16.5 Implementing the BodyTag
interface 333

16.6 Extending TagSupport and
BodyTagSupport 338

16.7 What’s more? 347

interface 329 16.8 Summary 348
16.9 Review questions 349

EXAM OBJECTIVES

 10.1 Describe the semantics of the “Classic” custom tag event model when each event
method (doStartTag, doAfterBody, and doEndTag) is executed, and explain what
the return value for each event method means; and write a tag handler class.
(Sections 16.1 through 16.5)

 10.2 Using the PageContext API, write tag handler code to access the JSP implicit vari-
ables and access web application attributes.
(Section 16.3)

 10.3 Given a scenario, write tag handler code to access the parent tag and an arbitrary
tag ancestor.
(Section 16.3)
309

Licensed to Tricia Fu <tricia.fu@gmail.com>

INTRODUCTION

In chapter 15, “Using custom tags,” we introduced JSP custom tags and tag libraries.
We discussed the way that we use custom tags in JSP pages and the process of import-
ing an existing tag library into a JSP page using the taglib directive. In this chapter,
we will learn how to develop our own custom libraries according to the “Classic”
model of tag library development.

16.1 UNDERSTANDING THE
TAG LIBRARY DESCRIPTOR

The tag library descriptor (TLD) file contains the information that the JSP engine
needs to know about the tag library in order to interpret the custom tags on a JSP page.
Let’s take a close look at the elements of the TLD and how they are used to describe a
tag library.

A tag library descriptor is an XML document that follows the DTD designated by
the JSP specification so that it can be created, read, and understood by all kinds of
users, including human users and the JSP engine, as well as other development tools.
In essence, it informs the user of a tag library about the usage and behavior of the tags
that the library provides.

On the exam, you may be asked to identify the correct format and usage of the dif-
ferent elements in a TLD file. In addition, given a properly formatted TLD file, you
may be asked to identify the correct usage of the corresponding tags and their
attributes in JSP pages.

Listing 16.1 is an example of a TLD. We have bolded four elements—<taglib>,
<tag>, <body-content>, and <attribute>—which you need to be familiar with
to do well on the exam. We will discuss all of these elements in the following sections.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib PUBLIC
 "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd" >

<taglib>

 <tlib-version>1.0</tlib-version>
 <jsp-version>2.0</jsp-version>
 <short-name>test</short-name>
 <uri>http://www.manning.com/sampleLib</uri>

 <tag>
 <name>greet</name>
 <tag-class>sampleLib.GreetTag</tag-class>
 <body-content>empty</body-content>

Listing 16.1 sampleLib.tld: A sample tag library descriptor
310 CHAPTER 16 DEVELOPING “CLASSIC” CUSTOM TAG LIBRARIES

 <description>Prints Hello and the user name</description>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <attribute>
 <name>user</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

</taglib>

This code demonstrates three important things:

• First, a tag library descriptor file, like all XML files, starts with the line <?xml
version="1.0" encoding="ISO-8859-1">, which specifies the version
of XML and the character set that the file is using.

• Second, it has a DOCTYPE declaration that identifies the DTD for this docu-
ment. In the case of a tag library descriptor that conforms to the JSP 1.2 specifi-
cation, the DOCTYPE declaration must be

 <!DOCTYPE taglib PUBLIC
 "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd" >

• Finally, it shows that all the contents of the TLD come under the <taglib>
element. In other words, the <taglib> element is the root element of a TLD.

NOTE Unlike the deployment descriptor (web.xml), the extension of a TLD file
is typically .tld and not .xml.

For all of the examples in this chapter, assume that the name of the TLD file is
sampleLib.tld, that it resides in the WEB-INF directory of the web application
named chapter16, and that the JSP code snippets that use the custom tags follow
the taglib directive declared as

 <%@ taglib prefix="test" uri="/WEB-INF/sampleLib.tld" %>

Therefore, all of the tags in these examples will be qualified with the prefix test.

16.1.1 The <taglib> element

The <taglib> element is the top-level, or root, element of the tag library descriptor.
It contains other second-level elements that provide information about the library as
a whole, such as the version of the library and the version of the JSP specification the
library conforms to. The following is the DTD for the <taglib> element:

 <!ELEMENT taglib (tlib-version, jsp-version, short-name,
 uri?, display-name?, small-icon?, large-icon?,
 description?, validator?, listener*, tag+) >

As we can see from this DTD, the three subelements—<tlib-version>, <jsp-
UNDERSTANDING THE TAG LIBRARY DESCRIPTOR 311

version>, and <short-name>—are mandatory and appear exactly once. There

Licensed to Tricia Fu <tricia.fu@gmail.com>

must be at least one <tag> subelement and zero or more <listener> elements. All
other subelements are optional and can occur no more than once. Table 16.1 briefly
describes their use.

Notice that the file sampleLib.tld shown in listing 16.1 contains a <uri> element:

 <uri>http://www.manning.com/sampleLib</uri>

This is the implicit way of adding a <taglib-uri> and <taglib-location>
pair entry into the taglib map. If you recall the discussion of the taglib map in chap-
ter 15, the JSP engine reads all of the taglib.tld files present in the packaged JAR
files. For each jarred TLD file that contains information about its own URI, the JSP
container automatically creates a mapping between the specified URI and the current
location of the JAR file. In this case, if the sampleLib.tld file is renamed as

Table 16.1 The subelements of <taglib>

Element Description Occurrence

tlib-version Specifies the version of the tag library. Exactly once

jsp-version Specifies the version of JSP that this tag library depends on.
For example, a value of 2.0 informs the JSP container that the
implementation classes are using features of the JSP Specifi-
cation 2.0 and that the container must be 2.0 compatible to be
able to use this library.

Exactly once

short-name Specifies a preferred prefix value for the tags in the library.
Usually used by page authoring tools.

Exactly once

uri A URI for identifying this tag library. This is the implicit way of
adding <taglib-uri> and <taglib-location> pair
entries into the taglib map. The value of this element is used
as the URI for this library and the actual physical location of
this TLD file is used as the location of the library.

At most once

display-name A short name that can be displayed by page authoring tools. At most once

small-icon A small icon that can be used by tools. At most once

large-icon A large icon that can be used by tools. At most once

description Any text describing the use of this taglib. At most once

validator Information about this library’s TagLibraryValidator. At most once

listener Specifies event listener classes. We saw in Chapter 6 that we
can specify listeners such as HttpSessionListener or
ServletContextListener in the web.xml file. Similarly,
if a tag library needs such listeners, we can specify the lis-
tener classes using this element. The container obtains these
listener classes in exactly the way it obtains them from
web.xml.

Any number of
times

tag Consists of subelements providing descriptions of a single
tag. For multiple tags, we use multiple <tag> elements.

At least once
312 CHAPTER 16 DEVELOPING “CLASSIC” CUSTOM TAG LIBRARIES

taglib.tld and kept in the META-INF directory inside a JAR file, the above

Licensed to Tricia Fu <tricia.fu@gmail.com>

<uri> element will cause the JSP container to create an implicit mapping of the URI
http://www.manning.com/sampleLib with the actual location of the JAR
file. We can then import the library into JSP pages using the taglib directive, as
shown here:

 <%@ taglib prefix="test" uri="http://www.manning.com/sampleLib" %>

However, if the deployment descriptor file contains an explicit mapping for the same
URI, then the explicit mapping takes precedence over such implicit mappings.

16.1.2 The <tag> element

The <taglib> element may contain one or more <tag> elements. Each <tag> ele-
ment provides information about a single tag, such as the tag’s name, that will be used
in the JSP pages, the tag’s handler class, the tag’s attributes, and so forth. The <tag>
element is defined as follows:

 <!ELEMENT tag (name, tag-class, tei-class?, body-content?,
 display-name?, small-icon?, large-icon?,
 description?, variable*, attribute*, example?) >

As we can see from this definition, the two subelements, <name> and <tag-
class>, are mandatory and appear exactly once. There can be zero or more <vari-
able> and <attribute> elements. All other subelements are optional and can
occur at most once. Table 16.2 gives a brief description of each of the subelements.

Table 16.2 The subelements of <tag>

Element Description Occurrence

name The unique tag name. Exactly once

tag-class The tag handler class that implements
javax.servlet.jsp.tagext.Tag.

Exactly once

tei-class An optional subclass of
javax.servlet.jsp.tagext.TagExtraInfo.

At most once

body-content The content type for the body of the tag. Can be empty,
JSP, or tagdependent. The default is JSP.

At most once

display-name A short name that is intended to be displayed by devel-
opment tools.

At most once

small-icon A small icon that can be used by development tools. At most once

large-icon A large icon that can be used by development tools. At most once

description Specifies any tag-specific information. At most once

variable Specifies the scripting variable information. Any number of times

attribute Describes an attribute that this tag can accept. Any number of times

example Optional informal description of an example of using
this tag.

At most once
UNDERSTANDING THE TAG LIBRARY DESCRIPTOR 313

Licensed to Tricia Fu <tricia.fu@gmail.com>

The <name> element specifies the name of the tag that is to be used in the JSP pages,
and the <tag-class> element specifies the fully qualified class name that imple-
ments the functionality of this tag. The class that we specify here must implement the
javax.servlet.jsp.tagext.Tag interface.

We can define multiple tags that have different names and the same tag class.
For example:

 <tag>
 <name>greet</name>
 <tag-class>sampleLib.GreetTag</tag-class >
 </tag>

 <tag>
 <name>welcome</name>
 <tag-class>sampleLib.GreetTag</tag-class>
 </tag>

In a JSP page, both of the tags, <test:greet> and <test:welcome>, will invoke
the same handler class, sampleLib.GreetTag (assuming that the JSP page uses
test as the prefix for this tag library).

However, we cannot define more than one tag with the same name, because the
engine would not be able to resolve the tag handler class while de-referencing the tag
name. Thus, the following is illegal:

 <tag>
 <name>greet</name>
 <tag-class>sampleLib.GreetTag</tag-class >
 </tag>

 <tag>
 <name>greet</name>
 <tag-class>sampleLib.WelcomeTag</tag-class>
 </tag>

16.1.3 The <attribute> element

The <attribute> element is a third-level element in a TLD and is a child of the
<tag> element. If a custom tag accepts attributes, then the information about each
attribute is specified using an <attribute> element. Each <attribute> element
can have five subelements that provide the following information about the attribute:

• The attribute’s name that will be used in the JSP pages

• The attribute’s data type (int, Boolean, etc.)

• Whether or not the attribute is mandatory

• Whether or not the attribute can accept values at request time

• A brief description of the attribute

Here is the definition for the <attribute> element:
314 CHAPTER 16 DEVELOPING “CLASSIC” CUSTOM TAG LIBRARIES

 <!ELEMENT attribute (name, required?, rtexprvalue?,
 type?, description?) >

Licensed to Tricia Fu <tricia.fu@gmail.com>

As we can see from the definition, only the <name> subelement is mandatory and
must appear exactly once. All other subelements are optional and can occur no more
than once. Table 16.3 describes each of the subelements.

Consider a tag element that is defined as follows:

 <tag>
 <name>greet</name>
 <tag-class>sampleLib.Greet</tag-class>
 <attribute>

 <name>user</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>

 </tag>

The above tag indicates that it accepts an attribute named user. Since the value of the
<required> tag is false, a JSP page author may choose not to use the attribute-
value pair. Further, since <rtexprvalue> is true, a JSP page author may use a
request-time expression value. Therefore, the following lines from a JSP page are valid
usages of this tag:

 <test:greet />

 <test:greet user='<%= request.getParameter("user") %>' />

In the previous tag definition, if we were to use a value of true for the <required>
element, then we would have to specify the attribute-value pair for the given attribute
in the JSP page. Thus, the first tag, <test:greet />, would generate a translation-
time error because it does not specify a value for the user attribute. Moreover, if we
were to use a value of false for the <rtexprvalue> element, then we must pro-
vide a value for the attribute in the JSP page that is not a request-time expression.

Table 16.3 The subelements of <attribute>

Element Description

name The name of the attribute.

required A value that specifies whether the attribute is required or optional. The default is
false, which means optional. If this is set to true, then the JSP page must pass
a value for this attribute. Possible values are true, false, yes, and no.

rtexprvalue A value that specifies whether or not the attribute can accept request-time
expression values. The default is false, which means it cannot accept request-
time expression values. Possible values are true, false, yes, and no.

type The data type of the attribute. This may be used only when <rtexprvalue> is
set to true. It specifies the return type of the expression, using a request-time
attribute expression: <%= %>. The default value is java.lang.String.

description Some text describing the attribute for documentation purposes.

Does not use user attribute Uses request-time
expression
UNDERSTANDING THE TAG LIBRARY DESCRIPTOR 315

Therefore, <test:greet user="john"/> would be fine, but the second line in

Licensed to Tricia Fu <tricia.fu@gmail.com>

the code, <test:greet user="<%=...%>"/>, which uses a request-time attribute
value, would generate a translation-time error.

16.1.4 The <body-content> element

The <body-content> element is a third-level element in a TLD and is a direct child
of the <tag> element. This element does not have any subelements and can have one
of three values:

• empty. Specifies that the body of the tag must be empty

• JSP. Specifies that the body of the tag can accept any normal JSP code

• tagdependent. Specifies that the content is not to be interpreted by the JSP
engine and is tag dependent

Let’s look at the details for each of these.

empty

Some tags require a body, while others do not. In chapter 15 (section 15.3), we dis-
cussed the tags <test:required>, <test:greet>, and <test:if>. The
<test:required> and <test:greet> tags did not have any body content. By
their mere presence, they generated some output in the final HTML. On the other
hand, the purpose of the <test:if> tag was to contain a set of statements that could
either be skipped or executed as required.

A value of empty for the <body-content> element indicates that a tag does not
support any body content. If the page author provides any content, the JSP engine
flags an error at translation time. The following example declares the <greet> tag
and specifies that its body content should be empty:

 <tag>
 <name>greet</name>
 <tag-class>sampleLib.GreetTag</tag-class>
 <body-content>empty</body-content>

 <attribute>
 <name>user</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>

 </tag>

Therefore, the following are valid usages of the <test:greet> tag shown above:

 <test:greet />

 <test:greet user="john" />

 <test:greet></test:greet>
316 CHAPTER 16 DEVELOPING “CLASSIC” CUSTOM TAG LIBRARIES

 <test:greet user="john"></test:greet>

Licensed to Tricia Fu <tricia.fu@gmail.com>

The following usages of the tag are invalid since they contain some body content
between the start and end tags:

 <test:greet>john</test:greet>

 <test:greet><%= "john" %></test:greet>

 <test:greet> </test:greet>

 <test:greet>
 </test:greet>

JSP

A value of JSP for the <body-content> element indicates that the tag can have any
valid JSP code in its body. This means that it can take plain text, HTML, scripting ele-
ments, standard actions, or even other custom tags nested inside this tag. The body
could even be empty. The following example declares the <if> tag and specifies that
its body can contain any kind of JSP content:

 <tag>
 <name>if</name>
 <tag-class>sampleLib.IfTag</tag-class>
 <body-content>JSP</body-content>

 <attribute>
 <name>condition</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>

 </tag>

At request time, the nested scriptlets and expressions are executed and the actions and
the custom tags are invoked as usual. Thus, the following are valid usages for the <if>
tag declared above:

 <test:if condition="true" />

 <test:if condition="true"> </test:if>

 <test:if condition="true"> </test:if>

 <test:if condition="true">

 <test:greet user="john" />

 <% int x = 2+3; %>
 2+3 = <%= x %>

 </test:if>

tagdependent

A value of tagdependent for the <body-content> element indicates that the tag
is expecting the body to contain text that may not be valid JSP code. The JSP engine

Space is not the same as empty

New Line is not the
same as empty
UNDERSTANDING THE TAG LIBRARY DESCRIPTOR 317

does not attempt to execute the body and passes it as is to the tag handler at request
time. It is up to the tag handler class to process the body content as needed. This value

Licensed to Tricia Fu <tricia.fu@gmail.com>

for the body content element is required if we want to introduce code snippets from
other languages. For example, we can develop a tag that executes SQL statements and
inserts the result set into the output:

 <test:dbQuery>
 SELECT count(*) FROM USERS
 </test:dbQuery>

The tag handler class of the dbQuery tag would handle everything regarding the data-
base, such as opening a connection, firing an SQL query, and so forth. It will only need
the actual SQL query string that is specified as the body of the above tag. For such a
tag, the <body-content> element must be specified as tagdependent.

NOTE Since a TLD is an XML document, the following rules apply:

• The order of the different elements and subelements is important. For
example, the <body-content> element must appear before the
<attribute> element under the <tag> element.

• The tag names are case sensitive. Thus, <Attribute> is not a valid ele-
ment; we must use <attribute>.

• The character - appearing in many of the elements is important. Thus,
<bodycontent> and <tagclass> are both valid in JSP 1.1 but invalid
in JSP 1.2. Questions on version-specific issues may not appear on the
exam, but it is good to know these points because while practicing the
examples with a JSP 1.2–compliant container, you will have to use <body-
content> and <tag-class> if you use the following DOCTYPE:

 <!DOCTYPE taglib PUBLIC
 "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd" >

16.2 THE TAG EXTENSION API
The Tag Extension API is a set of interfaces and classes that forms a contract between
the JSP container and the tag handler classes. Just as we need to know the Servlet API
to write servlets, we need to know the Tag Extension API to write custom tags. This
API consists of just one package: javax.servlet.jsp.tagext. It has four inter-
faces and 13 classes. Of these, the most important ones are shown in table 16.4.

Table 16.4 Important classes and interfaces of the

javax.servlet.jsp.tagext package

Interface Name Description

Tag The Tag interface is the base interface for all tag handlers and is used for writ-
ing simple tags. It declares six tag life-cycle methods, including the two most
important ones: doStartTag() and doEndTag(). We implement this inter-
face if we want to write a simple tag that does not require iterations or pro-
cessing of its body content.
318 CHAPTER 16 DEVELOPING “CLASSIC” CUSTOM TAG LIBRARIES

continued on next page

Licensed to Tricia Fu <tricia.fu@gmail.com>

All custom tag handlers must implement one of these three interfaces either directly
or indirectly (by extending from the adapter classes).

In addition to the interfaces and classes in table 16.4, the Tag handler classes
use the exception classes shown in table 16.5, which are defined in the javax.
servlet.jsp package.

Observe that the JspTagException class belongs to the javax.servlet.jsp
package and not to the javax.servlet.jsp.tagext package, as you might expect.

In the next few sections, we are going to examine the interfaces and classes that are
listed in table 16.4, using examples from the sampleLib package that is download-
able from the Manning web site. Figure 16.1 shows the inheritance relationship
between the interfaces and classes of the API and our sample classes. The oval-shaped
objects represent the interfaces, the square objects represent the classes, and the arrows
represent generalization. The names of the standard classes and interfaces present in

IterationTag IterationTag extends the Tag interface and adds one more method for
supporting iterations: doAfterBody().

BodyTag BodyTag extends IterationTag and adds two methods for supporting the
buffering of body contents: doInitBody() and setBodyContent().

Class Name Description

TagSupport TagSupport implements the IterationTag interface and provides a default
implementation for all its methods, acting as an IterationTag adapter class.
We can use it as a base class for implementing simple and iterative custom tags.

BodyTagSupport BodyTagSupport implements the BodyTag interface and provides a default
implementation for all its methods, acting as a BodyTag adapter class. We can
use it as a base class for implementing custom tags that process the contents
of the body.

BodyContent BodyContent extends the JspWriter class and acts as a buffer for the tem-
porary storage of the evaluated body of a tag. This object is used only with the
BodyTag interface or the BodyTagSupport class.

Table 16.5 Exception classes of javax.servlet.jsp

Class Name Description

JspException JspException is derived from java.lang.Exception. It is a generic
exception that is known to the JSP engine. All uncaught JspExceptions
result in an invocation of the error-page machinery. The important methods
doStartTag(), doInitBody(),doAfterBody(), and doEndTag() all
throw JspException.

JspTagException JspTagException extends JspException. Tag handler classes can use
this exception to indicate unrecoverable errors.

Table 16.4 Important classes and interfaces of the

javax.servlet.jsp.tagext package (continued)

Interface Name Description
THE TAG EXTENSION API 319

the javax.servlet.jsp.tagext package are in bold. The other nine classes are
the examples that we are going to look at in the following sections.

Licensed to Tricia Fu <tricia.fu@gmail.com>

16.3 IMPLEMENTING THE TAG INTERFACE

The Tag interface is the base interface for all custom tag handlers. It provides the basic
life-cycle methods that the JSP engine calls on the tags. Table 16.6 gives a brief descrip-
tion of the methods and constants defined by the Tag interface.

Figure 16.1

A diagram of the

Tag Extension API

and the examples

in this chapter

Table 16.6 Methods and constants of the

javax.servlet.jsp.tagext.Tag interface

Method Name Description

int doStartTag() Called when the opening tag is encountered

int doEndTag() Called when the closing tag is encountered

Tag getParent() Returns the handler class object of the closest enclosing tag
of this tag
320 CHAPTER 16 DEVELOPING “CLASSIC” CUSTOM TAG LIBRARIES

continued on next page

Licensed to Tricia Fu <tricia.fu@gmail.com>

16.3.1 Understanding the methods of the Tag interface

Let’s take a closer look at the methods in the life cycle of a custom tag. They are pre-
sented here in the sequence in which they are normally called.

The setPageContext() method

The setPageContext() method is the first method that is called in the life cycle
of a custom tag. The signature of setPageContext() is

 public void setPageContext(PageContext);

The JSP container calls this method to pass the pageContext implicit object of the
JSP page in which the tag appears. A typical implementation of this method is to save
the pageContext reference in a private member for future use.

The setParent() and getParent() methods

These methods are used when custom tags are nested one inside the other. In such
cases, the outer tag is called the parent tag, while the inner tag is called the child tag.
The signatures of these methods are

 public void setParent(Tag);
 public Tag getParent();

The JSP container calls the setParent() method on the child tag and passes it a

void release() Called on a tag handler to release resources

void
setPageContext(PageContext)

Sets the current page context

void setParent(Tag) Sets the parent (closest enclosing tag handler) of this tag
handler

Constant Description

EVAL_BODY_INCLUDE Possibly returned by value for doStartTag()
Instructs the JSP engine to evaluate the tag body and include
it in the output

SKIP_BODY Possibly returned by value for doStartTag()
Instructs the JSP engine not to evaluate the tag body and not
to include it in the output

EVAL_PAGE Possibly returned by value for doEndTag()
Instructs the JSP engine to evaluate the rest of the page and
include it in the output

SKIP_PAGE Possibly returned by value for doEndTag()
Instructs the JSP engine not to evaluate the rest of the page
and not to include it in the output

Table 16.6 Methods and constants of the

javax.servlet.jsp.tagext.Tag interface (continued)

Method Name Description
IMPLEMENTING THE TAG INTERFACE 321

reference to the parent tag. The getParent() method is usually called by one of the

Licensed to Tricia Fu <tricia.fu@gmail.com>

child tags and not directly by the JSP container. A typical implementation of these
methods is to save the reference to the parent tag in a private member and return it
when required. For example, if a JSP page has multiple tags at more than two levels of
nesting, then the JSP engine passes each child tag a reference to its immediate parent.
This allows the innermost tag to get a reference to the outermost tag by calling get-
Parent() on its immediate parent and then again calling getParent() on the
returned reference, working its way up the nested hierarchy.

The setter methods

Attributes in custom tags are handled in exactly the same way properties are handled
in JavaBeans. If a custom tag has any attributes, then for each attribute, the JSP engine
calls the appropriate setter method to set its value at request time. Since the method
signatures depend on the attribute names and types, these methods are not defined in
the Tag interface but are invoked using the standard introspection mechanism that is
used in JavaBeans. The setter methods are called after the calls to the setPage-
Context() and setParent() methods but before the call to doStartTag().

The doStartTag() method

After setting up the tag with appropriate references by calling the setPage-
Context(), setParent(), and setter methods, the container calls the doStart-
Tag() method on the tag. The signature of doStartTag() is

 public int doStartTag() throws JspException;

This method marks the beginning of the tag’s actual processing, giving the tag handler
a chance to do initial computations and to verify whether or not the attribute values
passed in the setter methods are valid. If the initialization fails, the method may throw
a JspException or a subclass of JspException, such as JspTagException,
to indicate the problem.

After initialization, the doStartTag() method decides whether or not to con-
tinue evaluating its body content. As a result, it returns one of the two integer con-
stants defined in the Tag interface: EVAL_BODY_INCLUDE or SKIP_BODY. A
return value of Tag.EVAL_BODY_INCLUDE indicates that the body must be exe-
cuted and that its output must be included in the response, while a return value of
Tag.SKIP_BODY indicates that the body must be skipped and that it is not to be
evaluated at all. This method cannot return any other value.

The doEndTag() method

After the body of the tag is evaluated or skipped (depending on the return value
of doStartTag()), the container calls the doEndTag() method. The signa-
ture of doEndTag() is
322 CHAPTER 16 DEVELOPING “CLASSIC” CUSTOM TAG LIBRARIES

 public int doEndTag() throws JspException;

Licensed to Tricia Fu <tricia.fu@gmail.com>

This marks the end of the processing of the tag and gives the tag handler a chance to
do the final cleanup for the tag. If anything fails during the cleanup process, the
method may throw a JspException or a subclass of JspException, such as
JspTagException, to indicate the problem.

Finally, the doEndTag() method decides whether or not to continue evaluating the
rest of the JSP page. As a result, it returns one of the two integer constants defined in
the Tag interface: EVAL_PAGE or SKIP_PAGE. A return value of Tag.EVAL_PAGE
indicates that the rest of the JSP page must be evaluated and its output be included in
the response, while a return value of Tag.SKIP_PAGE indicates that the rest of the
JSP page must not be evaluated at all and that the JSP engine should return immedi-
ately from the current _jspService() method. If this page was forwarded or
included from another JSP page or a servlet, only the current page evaluation is ter-
minated, and if the page was included, the processing returns to the calling compo-
nent. This method cannot return any other value.

The release() method

Finally, the container calls the release() method on the handler class when the tag
handler object is no longer required. The signature of release() is

 public void release();

A custom tag may occur multiple times on a JSP page. A single instance of the tag han-
dler may be used to handle all of these occurrences. The JSP container calls the
release() method on the handler class when the handler object is no longer
required. It is important to note that this method is not called after every call to
doEndTag(). It is called only once, when the container decides to put this instance
out of service. For example, if the container implementation maintains a pool of tag
handler instances, the container may reuse an instance of a tag by calling the sequence
setPageContext(), doStartTag(), doEndTag() multiple times. The con-
tainer calls the release() method only when the tag is to be removed permanently
from the pool. This method can be used to release all resources acquired by the tag
handler during its lifetime.

The flowchart in figure 16.2 shows the order of processing in a tag handler class
that implements the Tag interface.

Let’s now look at some examples of using the Tag interface. We will write tag han-
dlers for the following cases:

• An empty tag that just prints HTML text

• An empty tag that accepts an attribute

• A nonempty tag (a tag with a body) that skips or includes its body content
IMPLEMENTING THE TAG INTERFACE 323

Licensed to Tricia Fu <tricia.fu@gmail.com>

16.3.2 An empty tag that prints HTML text

In chapter 15 (section 15.3), we used a tag named required on a JSP page to demon-
strate the use of an empty tag. It prints the * character wherever it is placed on the page:

 <test:required />

Listing 16.2 shows the implementation of the tag handler for this tag.

package sampleLib;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class RequiredTag implements Tag
{
 private PageContext pageContext;
 private Tag parentTag;

 public void setPageContext(PageContext pageContext)
 {
 this.pageContext = pageContext;
 }

 public void setParent(Tag parentTag)
 {
 this.parentTag = parentTag;

Figure 16.2

Flowchart for the

Tag interface

Listing 16.2 RequiredTag.java
324 CHAPTER 16 DEVELOPING “CLASSIC” CUSTOM TAG LIBRARIES

 }

Licensed to Tricia Fu <tricia.fu@gmail.com>

 public Tag getParent()
 {
 return this.parentTag;
 }

 public int doStartTag() throws JspException
 {
 try
 {

 JspWriter out = pageContext.getOut();
 out.print("*");
 }
 catch(Exception e)
 {
 throw new JspException("Error in RequiredTag.doStartTag()");
 }

 return SKIP_BODY;
 }

 public int doEndTag() throws JspException
 {
 return EVAL_PAGE;
 }

 //clean up the resources (if any)
 public void release()
 {
 }
}

This code shows a simple tag handler class, RequiredTag, that implements the Tag
interface and defines all six methods. First, we save the references to pageContext
and the parent tag in the setPageContext() and setParent() methods. Note
that in this tag, we do not have any attributes, and so we have not defined any setter
methods. Then, in the doStartTag() method, we use the saved pageContext
reference to get the output writer of the JSP page and print the HTML code:

 JspWriter out = pageContext.getOut();
 out.print("*");

We return SKIP_BODY in doStartTag() because we expect the page author to use
this as an empty tag. Finally, we return EVAL_PAGE in doEndTag(), since we want
the rest of the page to be executed normally. The following <tag> element describes
this tag in a TLD file:

 <tag>
 <name>required</name>
 <tag-class>sampleLib.RequiredTag</tag-class>
 <body-content>empty</body-content>
IMPLEMENTING THE TAG INTERFACE 325

 <description>Prints * wherever it occurs</description>
 </tag>

Licensed to Tricia Fu <tricia.fu@gmail.com>

Notice that we have specified <body-content> as empty because we do not want
to have any body content for this tag.

NOTE We could have gotten the output writer and written out the HTML code in
doEndTag() instead of doStartTag(). In tags that are empty, or in tags
where doStartTag() returns SKIP_BODY, such as the above one, it does
not matter in which method you choose to print out the HTML code.
However, if the tag has a body and if the doStartTag() method returns
EVAL_BODY_INCLUDE, then anything that is printed in doStartTag()
appears before the body content and anything that is printed in doEnd-
Tag() appears after the body content in the final output.

16.3.3 An empty tag that accepts an attribute

When a tag accepts attributes, there are three important things that we must do for
each attribute:

• We must declare an instance variable in the tag class to hold the value of
the attribute.

• If we do not want to make the attribute mandatory, we must either pro-
vide a default value or take care of the corresponding null instance variable
in the code.

• We must implement the appropriate setter methods for each of the attributes.

Let’s look at an implementation of the <greet> tag that accepts one attribute, user,
and prints the word Hello followed by the user value, in the output HTML:

 <test:greet />
 <test:greet user='john' />

The tag prints only the word Hello if the user attribute is not specified. The follow-
ing is a code snippet from the file GreetTag.java, which is on the Manning web
site. We have omitted the parts of the code that are common to all the examples, such
as package declarations, import statements, and setPageContext():

 public class GreetTag implements Tag
 {
 //other methods as before

 //A String that holds the user attribute
 private String user;

 //The setter method that is called by the container
 public void setUser(String user) { this.user = user; }

 public int doStartTag() throws JspException
 {
 JspWriter out = pageContext.getOut();

 try
326 CHAPTER 16 DEVELOPING “CLASSIC” CUSTOM TAG LIBRARIES

 {

Licensed to Tricia Fu <tricia.fu@gmail.com>

 if (user==null)
 out.print("Hello!");

 else

 out.print("Hello "+user+"!");

 }
 catch(Exception e)
 {
 throw new JspException("Error in Greet.doStartTag()");

 }

 return SKIP_BODY;
 }
 }

This code is similar to the code for RequiredTag except that it has two extra mem-
bers: a variable and a setter method for the user attribute. If and when the JSP
engine encounters the user attribute in the tag, it calls the setUser() method,
passing it the attribute’s value. The setUser() method stores this value in the pri-
vate instance variable, which is then used by the doStartTag() method. In this
example, if the page author does not specify the user attribute in the <test:greet>
tag, the user variable remains null and we print the word Hello in the output
without a username.

The following <tag> element describes this tag in a TLD file:

 <tag>
 <name>greet</name>
 <tag-class>sampleLib.GreetTag</tag-class>
 <body-content>empty</body-content>
 <description>Prints Hello user! wherever it occurs</description>
 <attribute>

 <name>user</name>

 <required>false</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 </tag>

You may have been surprised at the use of the user variable as an instance variable.
Using instance variables to keep request-specific information is very dangerous in serv-
lets since they are not thread safe. However, in the case of custom tags, the onus of
thread safety is on the container. It ensures that either a new tag handler instance is
created for each occurrence of the tag in a JSP page, or if the container maintains a pool
of instances, then an appropriate instance is reused from a pool and the attributes are
reset. Thus, in the following example, the second occurrence of the <test:greet>
tag will not use the value of the user attribute passed into the first occurrence:

 <html><body>
 <test:greet user="john" />
 <test:greet />
IMPLEMENTING THE TAG INTERFACE 327

 </body></html>

Licensed to Tricia Fu <tricia.fu@gmail.com>

16.3.4 A nonempty tag that includes its body content

The doStartTag() method can return either EVAL_BODY_INCLUDE or SKIP_
BODY to include or skip the body content. Let’s look at a tag that uses this feature to
provide functionality similar to that of an if statement in a programming language.
The following is a code snippet from the IfTag.java file you can find on the Man-
ning web site:

 public class IfTag implements Tag
 {
 //other methods as before

 private boolean condition = false;

 public void setCondition(boolean condition)
 {
 this.condition = condition;
 }

 public int doStartTag() throws JspException
 {
 if (condition)
 return EVAL_BODY_INCLUDE;

 else

 return SKIP_BODY;

 }

 }

In this example, we use a boolean attribute, condition, to determine whether
the body needs to be included or skipped. In the doStartTag() method,
depending on the condition value, we return either Tag.EVAL_BODY_INCLUDE
or Tag.SKIP_BODY.

The following <tag> element describes the <if> tag in a TLD file:

 <tag>
 <name>if</name>
 <tag-class>sampleLib.IfTag</tag-class>
 <body-content>JSP</body-content>

 <attribute>
 <name>condition</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

Observe that we have specified the <body-content> as JSP. This allows us to write
any valid JSP code in the body of the tag. If the doStartTag() method of the tag
handler returns EVAL_BODY_INCLUDE, the body will be executed like normal JSP
code; otherwise, it will be skipped altogether. We have specified the value of the
328 CHAPTER 16 DEVELOPING “CLASSIC” CUSTOM TAG LIBRARIES

<required> element as true, since we need it to decide whether or not to include
the body content. The following code shows the usage of the <if> tag in the JSP page:

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <%@ taglib prefix="test" uri="/WEB-INF/sampleLib.tld" %>
 <% boolean debug = "true".equals(request.getParameter("debug")); %>

 <html><body>
 Hello

 <test:if condition="<%= debug %>" >
 DEBUG INFO:...
 </test:if>

 </body></html>

When we access the above JSP page as

 http://localhost:8080/chapter16/ifTest.jsp?debug=true

the output will be:

 Hello
 DEBUG INFO:...

If we pass debug=false in the query string of the URL, the output will not contain
the second line.

16.4 IMPLEMENTING THE ITERATIONTAG INTERFACE

In the previous examples, we used the Tag interface to either include or skip the body
content of the tag. However, if the body content was included, it was included only
once. The IterationTag interface extends the Tag interface and allows us to
include the body content multiple times, in a way that is similar to the loop function-
ality of a programming language. The IterationTag interface declares one method
and one constant, as shown in table 16.7.

16.4.1 Understanding the IterationTag methods

Since IterationTag extends Tag, it inherits all the functionality of the Tag inter-
face. The container sets up the iterative tag with appropriate references by calling the
setPageContext() and setParent() methods, passes the attribute values

Table 16.7 Methods of the javax.servlet.jsp.tagext.IterationTag interface

Method Name Description

int doAfterBody() This method is called after each evaluation of the tag body. It can return
either of two values: IterationTag.EVAL_BODY_AGAIN or
Tag.SKIP_BODY. The return value determines whether or not thebody
needs to be reevaluated.

Constant Description

EVAL_BODY_AGAIN Possible return value for doAfterBody().
This constant instructs the JSP engine to evaluate the tag body and
include it in the output.
IMPLEMENTING THE ITERATIONTAG INTERFACE 329

using the setter methods, and calls doStartTag(). Depending on the return value
of doStartTag(), the container either includes or skips the body content.

Licensed to Tricia Fu <tricia.fu@gmail.com>

If doStartTag() returns SKIP_BODY, then the body is skipped and the con-
tainer calls doEndTag(). In this case, the doAfterBody() method is never called
on the iterative tag. However, if doStartTag() returns EVAL_BODY_INCLUDE,
the body of the tag is evaluated, the result is included in the output, and the container
calls doAfterBody() for the very first time.

The doAfterBody() method

The doAfterBody() is the only method defined by the IterationTag interface.
It gives the tag handler a chance to reevaluate its body. The signature of doAfter-
Body() is

 public int doAfterBody() throws JspException;

If an error occurs during the invocation of the doAfterBody() method, it may
throw a JspException or a subclass of it, such as JspTagException, to indicate
the problem. If everything goes fine, it decides whether or not to reevaluate its body.
To evaluate the body again, it will return the integer constant EVAL_BODY_AGAIN,
which is defined in the IterationTag interface. This will cause an evaluation of the
tag’s body the second time, and after the evaluation, the JSP container will call
doAfterBody() for the second time. This process continues until doAfter-
Body() returns SKIP_BODY, which is defined in the Tag interface. We cannot
return any other value from this method.

Finally, the doEndTag() method is called, either because doStartTag()
returns SKIP_BODY, or because doAfterBody() returns SKIP_BODY. The pur-
pose and functionality of the doEndTag() method in the IterationTag interface
are the same as in the Tag interface.

The flowchart in figure 16.3 shows the order of processing in a tag handler class
that implements the IterationTag interface.

16.4.2 A simple iterative tag

Let’s now look at a tag that provides the functionality similar to that of a looping con-
struct in a programming language. The following code snippet from a JSP page dem-
onstrates the use of the loop tag:

 <%@ taglib prefix="test" uri="/WEB-INF/sampleLib.tld" %>
 <html><body>
 <test:loop count="5" >
 Hello World!

 </test:loop>
 </body></html>

The above tag has an attribute named count that accepts integral values to specify the
number of times the body of the tag should be executed. The above code prints Hello
330 CHAPTER 16 DEVELOPING “CLASSIC” CUSTOM TAG LIBRARIES

World! five times in the output.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Listing 16.3 shows the code for LoopTag.java. This tag handler class implements
the IterationTag interface and thus provides implementation for the extra
method doAfterBody() as well as the six methods of the Tag interface.

package sampleLib;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class LoopTag implements IterationTag
{
 private PageContext pageContext;
 private Tag parentTag;

 public void setPageContext(PageContext pageContext)

Figure 16.3 Flowchart for the IterationTag interface

Listing 16.3 LoopTag.java
IMPLEMENTING THE ITERATIONTAG INTERFACE 331

 {

Licensed to Tricia Fu <tricia.fu@gmail.com>

 this.pageContext = pageContext;
 }

 public void setParent(Tag parentTag)
 {
 this.parentTag = parentTag;
 }

 public Tag getParent()

 {
 return this.parentTag;
 }

 //Attribute to maintain looping count
 private int count = 0;

 public void setCount(int count)
 {
 this.count = count;
 }

 public int doStartTag() throws JspException
 {
 if (count>0)
 return EVAL_BODY_INCLUDE;

 else

 return SKIP_BODY;

 }

 public int doAfterBody() throws JspException
 {

 if (--count > 0)
 return EVAL_BODY_AGAIN;
 else

 return SKIP_BODY;

 }

 public int doEndTag() throws JspException
 {
 return EVAL_PAGE;
 }

 public void release()
 {
 }
}

In listing 16.3, we have used the count variable to keep track of the number of iter-
ations. For each invocation of the doAfterBody() method, we decrement the
count by 1 and return EVAL_BODY_AGAIN until the count reaches 0. If the count
reaches 0, we return SKIP_BODY to terminate the looping effect, which tells the con-
332 CHAPTER 16 DEVELOPING “CLASSIC” CUSTOM TAG LIBRARIES

tainer to skip further iterations and call doEndTag().

Licensed to Tricia Fu <tricia.fu@gmail.com>

The following <tag> element describes the loop tag in a TLD file:

 <tag>
 <name>loop</name>
 <tag-class>sampleLib.LoopTag</tag-class>
 <body-content>JSP</body-content>
 <attribute>
 <name>count</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

As you can see, describing an IterationTag is no different than defining a normal
tag in a TLD. We have not informed the container explicitly whether or not this tag is
iterative. The container introspects the interface implemented by the tag’s class and
calls doAfterBody() only if it finds that the class is an instance of IterationTag.

16.5 IMPLEMENTING THE BODYTAG INTERFACE

The BodyTag interface extends IterationTag and adds a new functionality that
lets the tag handler evaluate its body content in a temporary buffer. This feature allows
the tag to process the generated contents at will. For example, after evaluation, the tag
handler can view the body content, discard it completely, modify it, or add more data
to it before sending it to the output stream. Since it is derived from IterationTag,
BodyTag can also handle the evaluation and processing of the content as many times
as required.

The BodyTag interface declares two methods and a constant, as shown in
table 16.8.

NOTE In JSP 1.1, there was another return value for BodyTag.doAfterBody():
EVAL_BODY_TAG. This value is now deprecated. If the exam asks about it,
you should treat it the same as IterationTag.EVAL_BODY_AGAIN or

Table 16.8 Methods of the javax.servlet.jsp.tagext.BodyTag Interface

Method Name Description

void
setBodyContent(BodyContent)

Called by the JSP container to pass a reference to a
BodyContent object.

void doInitBody() Called by the JSP container after calling
setBodyContent(), to allow the tag handler class to per-
form initialization steps on BodyContent.

Constant Description

EVAL_BODY_BUFFERED A constant defined as a return value for doStartTag()
and doAfterBody() for tags that want to buffer the eval-
uation of their content.
IMPLEMENTING THE BODYTAG INTERFACE 333

BodyTag.EVAL_BODY_BUFFERED, as the case may be.

Licensed to Tricia Fu <tricia.fu@gmail.com>

16.5.1 Understanding the methods of BodyTag

The BodyTag interface adds two new methods to handle the processing of the tag’s
body: setBodyContent() and doInitBody().

The setBodyContent() method

The JSP container calls the setBodyContent() method to pass an instance of
BodyContent to the tag. The signature of setBodyContent() is

 public void setBodyContent(BodyContent);

A typical implementation of this method is to save the BodyContent reference in a
private member for future use.

The doInitBody() method

The JSP container calls the doInitBody() method after calling setBodyCon-
tent(). The signature of doInitBody() is

 public void doInitBody() throws JspException;

This method allows the tag handler class to initialize the BodyContent object, if
required, before the actual evaluation process starts. Thus, if the initialization of Body-
Content fails, the doInitBody() method may throw a JspException or a sub-
class of JspException, such as JspTagException, to indicate the problem.

Since BodyTag extends IterationTag, which in turn extends the Tag inter-
face, BodyTag inherits all the functionality of IterationTag as well as Tag. The
container sets up the implementation handler class with appropriate references by call-
ing the setPageContext() and setParent() methods, passes the attribute val-
ues using the setter methods, and calls doStartTag().

The doStartTag() method of a class that implements the BodyTag interface
returns any one of three values: EVAL_BODY_INCLUDE or SKIP_BODY inherited from
the Tag interface, or EVAL_BODY_BUFFERED, which is defined in the BodyTag inter-
face. The actions taken by the JSP container for the return values EVAL_BODY_INCLUDE
and SKIP_BODY are the same as for the IterationTag interface.

However, if doStartTag() returns EVAL_BODY_BUFFERED, the JSP con-
tainer takes a different course of action. It first creates an instance of the BodyCon-
tent class. The BodyContent class is a subclass of JspWriter and overrides all
the print and write methods of JspWriter to buffer any data written into it rather
than sending it to the output stream of the response. The JSP container passes the
newly created BodyContent instance to the tag handler using its setBodyCon-
tent() method, calls doInitBody() on the tag, and finally evaluates the body of
the tag, filling the BodyContent buffer with the result of the body tag evaluation.

The container calls doAfterBody() after evaluating the body, writing the data
directly into the output or buffering it, as the case may be. If the output was buffered,
334 CHAPTER 16 DEVELOPING “CLASSIC” CUSTOM TAG LIBRARIES

we can add, modify, or delete the contents of this buffer. Finally, this method returns

Licensed to Tricia Fu <tricia.fu@gmail.com>

EVAL_BODY_AGAIN or EVAL_BODY_BUFFERED to continue evaluating the body
in a loop, or returns SKIP_BODY to terminate the loop.

Finally, the container calls doEndTag(), and, as with the other interfaces, the tag
handler class that is implementing the BodyTag interface can return either
SKIP_PAGE or EVAL_PAGE.

The flowchart in figure 16.4 shows the order of processing in a tag handler class
that implements the BodyTag interface.

16.5.2 A tag that processes its body

Let’s now look at a tag named mark that displays certain characters in its tag body in
boldface when they are specified in the search attribute of the tag. For example:
 <test:mark search="s">
 she sells sea shells on the sea shore!
 </test:mark>

will print

Figure 16.4 Flowchart for the BodyTag interface
IMPLEMENTING THE BODYTAG INTERFACE 335

 she sells sea shells on the sea shore!

Licensed to Tricia Fu <tricia.fu@gmail.com>

whereas if we pass sh to the search attribute, it will print

 she sells sea shells on the sea shore!

This kind of feature is useful if your site maintains many informative documents and
allows a search on them using a keyword. The output of the search engine can be
nested inside the mark tag with the search string shown in bold.

Listing 16.4 contains the code for the tag handler class of this tag.

package sampleLib;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class MarkerTag implements BodyTag {

//INITIALIZATION
 private PageContext pageContext;
 private Tag parentTag;

 public void setPageContext(PageContext pageContext)
 {
 this.pageContext = pageContext;
 }

 public void setParent(Tag parentTag)
 {
 this.parentTag = parentTag;
 }

 public Tag getParent()
 {
 return this.parentTag;
 }

//attributes
 private String search = null;

 public void setSearch(String search)
 {
 this.search = search;
 }

//BODY CONTENT RELATED MEMBERS

 private BodyContent bodyContent;

 public void setBodyContent(BodyContent bodyContent)
 {
 this.bodyContent = bodyContent;

 }

 public void doInitBody() throws JspException

Listing 16.4 MarkerTag.java
336 CHAPTER 16 DEVELOPING “CLASSIC” CUSTOM TAG LIBRARIES

 {
 }

Licensed to Tricia Fu <tricia.fu@gmail.com>

//START, ITERATE, AND END METHODS

 public int doStartTag() throws JspException
 {
 return EVAL_BODY_BUFFERED;
 }

 public int doAfterBody() throws JspException
 {

 try{
 JspWriter out = bodyContent.getEnclosingWriter();

 String text = bodyContent.getString();

 int len = search.length();

 int oldIndex=0, newIndex=0;

 while((newIndex = text.indexOf(search,oldIndex))>=0){

 if (newIndex<oldIndex)
 {
 break;
 }
 out.print(text.substring(oldIndex,newIndex));
 out.print(""+search+"");
 oldIndex = newIndex + len;
 }

 out.print(text.substring(oldIndex));
 }
 catch(Exception e){
 e.printStackTrace();
 }

 return SKIP_BODY;

 }

 public int doEndTag() throws JspException {
 return EVAL_PAGE;
 }

 public void release()
 {
 }
}

In listing 16.4, we have used an object of type BodyContent.
Note that we have used EVAL_BODY_BUFFERED in the return value of

doStartTag(). If we had returned EVAL_BODY_INCLUDE instead, it would have
thrown a NullPointerException upon using the bodyContent object in the
doAfterBody():
IMPLEMENTING THE BODYTAG INTERFACE 337

 JspWriter out = bodyContent.getEnclosingWriter();

Licensed to Tricia Fu <tricia.fu@gmail.com>

This is because setBodyContent() is not called and the bodyContent object is
not set if doStartTag() returns EVAL_BODY_INCLUDE.

16.6 EXTENDING TAGSUPPORT AND
BODYTAGSUPPORT

Until now, we have been writing tag classes that directly implement the Tag, Iter-
ationTag, and BodyTag interfaces. We chose to do this in order to learn about the
flow of events that occur during the execution of a tag in a JSP page. In practice, how-
ever, we do not need to write all of the methods ourselves. The API provides two
adapter classes, TagSupport and BodyTagSupport, that implement the Iter-
ationTag interface and the BodyTag interface, respectively, and provide a default
implementation of all the methods. Thus, we only need to override those methods that
have to be customized.

16.6.1 The TagSupport class

The TagSupport class implements the IterationTag interface, and provides
default implementations for each of the methods of the Tag and IterationTag
interfaces. It adds some new convenience methods that allow us to maintain a list of
named objects in a hashtable and a method to find an outer tag of a given class from
an inner tag. Table 16.9 lists some of the important methods of the TagSupport
class and a protected attribute.

Table 16.9 Methods of the TagSupport class

Method Description

Important Overridden Methods and Their Default Return Values

int doStartTag() Inherited from Tag. The default return value is SKIP_BODY.

int doAfterBody() Inherited from IterationTag. The default return value is
SKIP_BODY.

int doEndTag() Inherited from Tag. The default return value is EVAL_PAGE.

Methods Useful for Convenient Handling of Nested Tags

void setParent(Tag) Accepts and maintains a reference to the parent tag.

Tag getParent() Returns the reference to the parent tag.

Tag findAncestorWithClass
(Tag, Class)

This is a static method. Given a reference to a tag and the
desired class, it will find the closest ancestor of the given tag
of the given class. Internally, it calls getParent() on each of
the references returned.

Convenience Methods Useful for Maintaining a Map of Name-Value Pairs, Especially for

Accepting Tag Attributes

void setValue(String,
Object)

Accepts a name-value pair. The name is a String and the
value can be any Object.
338 CHAPTER 16 DEVELOPING “CLASSIC” CUSTOM TAG LIBRARIES

continued on next page

Licensed to Tricia Fu <tricia.fu@gmail.com>

16.6.2 The BodyTagSupport class

The BodyTagSupport class extends the TagSupport class, inheriting all the func-
tionality shown in table 16.9. In addition, it implements the BodyTag interface and
provides default implementations of the setBodyContent() and doInit-
Body() methods. It also provides two convenience methods for handling buffered
output: getBodyContent() and getPreviousOut(). Table 16.10 lists some of
the important methods of the BodyTagSupport class.

16.6.3 Accessing implicit objects

One of the greatest features of custom tags is their ability to access all the objects that
are accessible to the JSP page in which they appear from within the tag handler classes.
This is done with the help of the PageContext object, which is set by the container
using the setPageContext() method before calling the doStartTag() method.

Object getValue(String) Returns the object for the supplied String name.

Enumeration getValues() Returns an Enumeration of all the values.

void removeValue(String) Removes the name-value pair from the list for the given
name.

Protected Member That Can Be Used by Derived Classes

PageContext pageContext A reference to the saved PageContext object.

Table 16.9 Methods of the TagSupport class (continued)

Method Description

Table 16.10 Methods of the BodyTagSupport class

Method Description

Important Overridden Methods and Their Default Return Values

int doStartTag() Inherited from Tag. The default return value is
EVAL_BODY_BUFFERED.

int doAfterBody() Inherited from IterationTag. The default return value is
SKIP_BODY.

int doEndTag() Inherited from Tag. The default return value is EVAL_PAGE.

Methods Useful for Convenient Handling of the Buffered Output

void
setBodyContent(BodyContent)

Accepts and maintains a reference to the BodyContent
object. The BodyContent object is a wrapper around the
actual JspWriter object. It acts as the current output
stream, but does not write the output directly to the client.
Instead, it buffers it for further processing.

BodyContent getBodyContent() Returns the reference to the BodyContent object.

JspWriter getPreviousOut() Returns the output writer object, which is wrapped inside
the BodyContent object.
EXTENDING TAGSUPPORT AND BODYTAGSUPPORT 339

Using the pageContext object, we can access any other object available to the page.

Licensed to Tricia Fu <tricia.fu@gmail.com>

For example, we have used it to get the JspWriter object to write out HTML in some
of the previous examples:

 JspWriter out = pageContext.getOut();

Table 16.11 lists the methods to access the four implicit objects that act as scope con-
tainers for other objects.

Let’s now look at a tag named <implicit> that accepts two attributes:
attributeName and scopeName. It searches for an object with the given name in
the given scope and will print it out in the output stream. The following JSP page code
shows the intended usage of this tag:

 <%@ taglib prefix="test" uri="/WEB-INF/sampleLib.tld" %>
 <html><body>
 <%
 application.setAttribute("attribute1", "somestring");
 session.setAttribute("attribute2", new Boolean(true));
 request.setAttribute("attribute3", new Integer(5));
 %>

 <test:implicit attributeName="attribute1" scopeName="application"/>
 <test:implicit attributeName="attribute2" scopeName="session"/>
 <test:implicit attributeName="attribute3" scopeName="request"/>
 </body></html>

In the above tag usage, we set attribute1, attribute2, and attribute3 in

Table 16.11 The four implicit objects that act as scope containers

Scope
Implicit

variable

Implicit Object

Class

Getting the Object from within

the Tag Class

Using Direct Getters As Named Objects

Application application ServletContext pageContext.
getServlet-
Context()

pageContext.get-
Attribute(Page-
Context.
APPLICATION);

Session session HttpSession pageContext.
getSession()

pageContext.get-
Attribute(Page-
Context.
SESSION);

Request request ServletRequest pageContext.
getRequest()

pageContext.get-
Attribute(Page-
Context.
REQUEST);

Page pageContext PageContext - pageContext.get-
Attribute(Page-
Context.
PAGECONTEXT);
340 CHAPTER 16 DEVELOPING “CLASSIC” CUSTOM TAG LIBRARIES

the application, session, and request scopes, respectively. Our intention is now to

Licensed to Tricia Fu <tricia.fu@gmail.com>

print the values of these attributes in the output HTML through our <implicit>
tag. To do this, we pass the attributeName and scopeName to the three
<test:implicit> tags one by one. The tags use these values to generate the fol-
lowing output:

 <html><body>
 someString
 true
 5
 </body></html>

Listing 16.5 contains the code for ImplicitTag.java, which implements the
<implicit> tag by extending the TagSupport class.

package sampleLib;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class ImplicitTag extends TagSupport {

 public void setAttributeName(String name)
 {
 //Stores the passed object in the hashtable maintained by
 //TagSupport with the name "attributeName".
 setValue("attributeName",name);
 }

 public void setScopeName(String scope)
 {
 //Stores the passed object in the hashtable with
 //the name "scopeName".
 setValue("scopeName",scope);
 }

 //Our utility method to convert the scopeName String
 //to the integer constant defined in PageContext for each scope.
 //We need this method because we have to use
 //PageContext.getAttribute(String name, int scope) later.

 private int getScopeAsInt()
 {
 //Retrieve the scopeName value from the hashtable
 String scope = (String) getValue("scopeName");

 if ("request".equals(scope))
 return PageContext.REQUEST_SCOPE;

 if ("session".equals(scope))
 return PageContext.SESSION_SCOPE;

 if ("application".equals(scope))

Listing 16.5 ImplicitTag.java
EXTENDING TAGSUPPORT AND BODYTAGSUPPORT 341

 return PageContext.APPLICATION_SCOPE;

Licensed to Tricia Fu <tricia.fu@gmail.com>

 //Default is page scope
 return PageContext.PAGE_SCOPE;
 }

 public int doStartTag() throws JspException
 {
 try
 {
 JspWriter out = pageContext.getOut();

 String attributeName = (String) getValue("attributeName");
 int scopeConstant = getScopeAsInt();

 out.print(pageContext.getAttribute(attributeName, scopeConstant));

 return SKIP_BODY;
 }
 catch(Exception e)
 {
 throw new JspException("Error in Implicit.doAfterBody()");
 }
 }
}

There are three points worth noting in listing 16.5:

• We have implemented a setter method for each attribute. However, instead of
defining a private instance variable for storing each attribute, we have used the
hashtable maintained by the TagSupport class to store the attributes as name-
value pairs.

• getScopeAsInt() is our utility method that returns the integer constant
representing the scope name that is stored as a string in the hashtable. These
constants are already defined by PageContext and are used by the Page-
Context.getAttribute(String name, int scope) method.

• Finally, in the doStartTag() method, we use the PageContext.get-
Attribute(String name, int scope) method to retrieve the value of the
given attribute name from the given scope name. After printing the value of
the attribute, we return SKIP_BODY, since we do not want to accept any body
content for the <implicit> tag.

This tag can be easily described in a TLD as follows:

 <tag>
 <name>implicit</name>
 <tag-class>sampleLib.ImplicitTag</tag-class>
 <body-content>empty</body-content>
 <attribute>
 <name>attributeName</name>
342 CHAPTER 16 DEVELOPING “CLASSIC” CUSTOM TAG LIBRARIES

 <required>true</required>
 </attribute>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <attribute>
 <name>scopeName</name>
 <required>true</required>
 </attribute>

 </tag>

16.6.4 Writing cooperative tags

Since tags are usually designed and developed with a common pattern of problems in
mind, we often build a group of tags that work together. Such tags are called cooperative
tags. One of the simplest examples to demonstrate the usage of cooperative tags is to
implement the switch-case functionality similar to the one provided by the Java
programming language. Let us look at three tags—<switch>, <case>, and
<default>—that can be used in a JSP page, as shown in listing 16.6.

<html><body>

 <%@ taglib prefix="test" uri="/WEB-INF/sampleLib.tld" %>

 <% String action = request.getParameter("action"); %>

 <test:switch conditionValue="<%= action %>" >

 <test:case caseValue="sayHello">
 Hello!
 </test:case>

 <test:case caseValue="sayGoodBye" >
 Good Bye!!
 </test:case>

 <test:default>
 I am Dumb!!!
 </test:default>

 </test:switch>

</body></html>

The conditionValue attribute of the switch tag acts like the switch condition
of the Java switch statement, while the caseValue attribute of the case tag acts
like the case value of the Java switch statement. Only those case tags whose
caseValue attribute value matches the value of the conditionValue attribute of
the switch tag should print their body contents. Thus, the above page should print
Hello! in the browser when accessed through the URL

 http://localhost:8080/chapter16/switchTest.jsp?action=sayHello

Let’s now look at SwitchTag.java, CaseTag.java, and DefaultTag.java,

Listing 16.6 switchTest.jsp
EXTENDING TAGSUPPORT AND BODYTAGSUPPORT 343

which implement these tags (listing 16.7).

Licensed to Tricia Fu <tricia.fu@gmail.com>

package sampleLib;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class SwitchTag extends TagSupport
{

 public void setPageContext(PageContext pageContext)
 {
 super.setPageContext(pageContext);

 //Sets the internal flag that tells whether or not a matching
 //case tag has been found to be false.
 setValue("caseFound", Boolean.FALSE);
 }

 //stores the value of the match attribute
 public void setConditionValue(String value)
 {
 setValue("conditionValue", value);
 }

 public int doStartTag() throws JspException
 {
 return EVAL_BODY_INCLUDE;
 }
}

The code for the SwitchTag class is quite simple and has just three methods: set-
PageContext(), a setter for the conditionValue attribute, and doStart-
Tag(). The caseFound flag indicates whether or not a matching case tag has been
found. The pageContext() method initializes it to false. We will show the use
of this flag in the case and default tags shortly. The setter method stores the value
of the conditionValue attribute using the setValue() method, as explained in
the previous example. We don’t want to do anything in the doStartTag() method,
but we do want the body of the switch tag to be evaluated. However, the default
implementation of doStartTag() provided by TagSupport returns SKIP_BODY,
so we need to override it and return EVAL_BODY_INCLUDE instead.

Listing 16.8 is the code for the case tag handler.

package sampleLib;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

Listing 16.7 SwitchTag.java

Listing 16.8 CaseTag.java
344 CHAPTER 16 DEVELOPING “CLASSIC” CUSTOM TAG LIBRARIES

public class CaseTag extends TagSupport
{

Licensed to Tricia Fu <tricia.fu@gmail.com>

 public void setCaseValue(String caseValue)
 {
 setValue("caseValue",caseValue);
 }

 public int doStartTag() throws JspException
 {

 //gets the reference of the enclosing switch tag handler.

 SwitchTag parent =
 (SwitchTag) findAncestorWithClass(this, SwitchTag.class);

 Object caseValue = this.getValue("caseValue");
 Object conditionValue = parent.getValue("conditionValue");

 //If the value of the caseValue attribute of this case tag
 //matches with the value of the conditionValue attribute of
 //the parent switch tag, it sets the caseFound flag to true and
 //includes the body; otherwise, it skips the body.

 if (conditionValue.equals(caseValue))

 {
 //Sets the caseFound flag to true
 parent.setValue("caseFound",Boolean.TRUE);

 //Includes the body contents in the output HTML
 return EVAL_BODY_INCLUDE;
 }
 else
 {

 return SKIP_BODY;
 }
 }
}

There are two points worth noting in listing 16.8:

• The setCaseValue() method stores the value attribute using the set-
Value() method of TagSupport.

• In doStartTag(), we first get a reference of the parent switch tag using the
findAncestorWithClass() method of TagSupport. Next, we retrieve
the value of the conditionValue attribute from the parent tag handler refer-
ence and the value of the caseValue attribute from the current tag. If the two
values match, we set the caseFound flag to true and return EVAL_BODY_
INCLUDE so that the body of this case tag is included in the output. Other-
wise, if the values don’t match, we return SKIP_BODY.

Now, let’s look at the code for the default tag handler in listing 16.9.
EXTENDING TAGSUPPORT AND BODYTAGSUPPORT 345

Licensed to Tricia Fu <tricia.fu@gmail.com>

package sampleLib;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class DefaultTag extends TagSupport
{

 public int doStartTag() throws JspException
 {

 SwitchTag parent = (SwitchTag)
 findAncestorWithClass(this, SwitchTag.class);

 Boolean caseFound = (Boolean) parent.getValue("caseFound");

 //If the conditionValue attribute value of the switch tag
 //did not match with any of the caseValue attribute values,
 //then it includes the body of this tag; otherwise; it skips the body.

 if (caseFound.equals(Boolean.FALSE))
 {
 return EVAL_BODY_INCLUDE;
 }
 else
 {
 return SKIP_BODY;
 }
 }
}

The implentation of the default tag handler checks whether the caseFound attribute
of the enclosing SwitchTag instance is set to true. If it is set to false, it means
that none of the caseValues matched with the conditionValue, in which case
the DefaultTag will include its own body. Otherwise, it will skip the body.

The following elements describe these tags in the TLD:

 <tag>
 <name>switch</name>
 <tag-class>sampleLib.SwitchTag</tag-class>
 <body-content>JSP</body-content>
 <attribute>
 <name>conditionValue</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <tag>
 <name>case</name>

Listing 16.9 DefaultTag.java
346 CHAPTER 16 DEVELOPING “CLASSIC” CUSTOM TAG LIBRARIES

 <tag-class>sampleLib.CaseTag</tag-class>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <body-content>JSP</body-content>
 <attribute>
 <name>caseValue</name>
 <required>true</required>
 </attribute>
 </tag>

 <tag>
 <name>default</name>

 <tag-class>sampleLib.DefaultTag</tag-class>
 <body-content>JSP</body-content>
 </tag>

16.7 WHAT’S MORE?

We have discussed the various types of tags, interfaces, and classes provided by the Tag
Extension API, which is information that you need to know in order to do well on the
exam. However, the story of custom tags does not end here. To get maximum benefit
from the use of custom tags, you should learn how to use other classes and the inter-
faces of the Tag Extension API as well. For example, you can learn how to use the
TagLibraryValidator and the PageData classes to validate the semantics of
the tags used in a JSP page at translation time, or how to make scripting variables in a
JSP page available—in a manner similar to <jsp:useBean>—via the TagExtra-
Info and TagVariableInfo classes. You can also learn how to handle resources
more efficiently by implementing the TryCatchFinally interface, and many other
techniques for working with custom tags.

The difference between custom tags and JavaBeans

Many times developers ask when they should use custom tags and when they should
use JavaBeans. They both are reusable components and help us to reduce the length of
our scriptlets and make our JSP pages cleaner and more manageable. Then, how do we
know when to use which type of component? For example, should the functionality
of database access go into JavaBeans, or in custom tags?

After reading chapters 14, 15, and 16, you should know that the two types of com-
ponents serve two different purposes. Here are some differences between the two that
might help you determine which one to use:

• JavaBeans are the data handlers of JSP pages and aid in encapsulating data-
management logic. They are used for storage. Tags, on the other hand, aid com-
putational logic related to a particular request.

• Tags are thread safe; beans are not. Beans, like other separate utility classes, have
to be made thread safe by the developers.

• Tags are aware of the environment (the page context) in which they execute.
WHAT’S MORE? 347

Beans are not.

Licensed to Tricia Fu <tricia.fu@gmail.com>

• Tags remain in the translation unit. We can think of tags as events occurring in
the execution of a JSP page. Beans are object stores that reside outside the trans-
lation unit.

• Tags can access implicit objects. Beans cannot.

• Tags only have page scope. They are created and destroyed within a single
request and in a single page. They can access other objects in all the scopes,
though. Beans, on the other hand, are themselves objects that reside in different
scopes. Therefore, tags can access and manipulate beans, while beans do not
access and manipulate tags.

• The Tag Extension API is designed closely with the concept of a JSP page in
mind. They may not be used in other applications. Beans, on the other hand,
are supposed to be reusable components and can be used by other containers.

• Tags are not persistent objects. Beans have properties, and properties have val-
ues. A set of values is called the state of the bean. This state can be persisted via
serialization and reused later.

So to answer the question about whether to use beans or tags for database access, let’s
clarify that we can use beans to access a database, to encapsulate data, and to imple-
ment business logic rules to manipulate data in the beans. The code for managing the
beans across scopes should be handled by custom tags. The code that uses the bean’s
properties and includes presentation logic should be placed in custom tags. Thus, tags
are a preferred way of writing JSP pages that use JavaBeans.

16.8 SUMMARY

In this chapter, we learned how to create our own custom tag libraries according to
the “Custom” model of development. The tag library descriptor (TLD) file contains the
information that the JSP engine needs to know about the tag library in order to suc-
cessfully interpret the custom tags on JSP pages. We discussed the TLD file and its three
important elements: <tag>, <attribute>, and <body-content>.

The Tag Extension API consists of one package: javax.servlet.jsp.tagext,
with 4 interfaces and 13 classes. We examined in detail the methods and constants of
the three interfaces: Tag, IterativeTag, and BodyTag. We then saw how we can
implement those interfaces in classes. In addition, the JSP API provides two adapter
classes, TagSupport and BodyTagSupport, that implement the Iteration-
Tag interface and BodyTag interface, respectively, and that provide default imple-
mentation of all the methods.

At this point, you should be able to answer exam questions about the structure and
format of the TLD file elements as well as questions based on the Tag Extension API
and implementation of custom tag libraries.
348 CHAPTER 16 DEVELOPING “CLASSIC” CUSTOM TAG LIBRARIES

Licensed to Tricia Fu <tricia.fu@gmail.com>

16.9 REVIEW QUESTIONS

1. Which of the following is not a valid subelement of the <attribute> element
in a TLD? (Select one)

a <name>

b <class>

c <required>

d <type>

2. What is the name of the tag library descriptor element that declares that an
attribute can have a request-time expression as its value?

[__________________]

3. Consider the following code in a JSP page.

 <% String message = "Hello "; %>

 <test:world>
 How are you?
 <% message = message + "World! "; %>
 </test:world>

 <%= message %>

If doStartTag() returns EVAL_BODY_BUFFERED and doAfterBody()
clears the buffer by calling bodyContent.clearBody(), what will be the
output of the above code? (Select one)

a Hello

b Hello How are you?
c Hello How are you? World!

d Hello World!

e How are you World!

4. Which of the following interfaces are required at a minimum to create a simple
custom tag with a body? (Select one)

a Tag

b Tag and IterationTag
c Tag, IterationTag, and BodyTag
d TagSupport

e BodyTagSupport

5. At a minimum, which of the following interfaces are required to create an itera-
tive custom tag? (Select one)
REVIEW QUESTIONS 349

a Tag

b Tag and IterationTag

Licensed to Tricia Fu <tricia.fu@gmail.com>

c Tag, IterationTag, and BodyTag
d TagSupport

e BodyTagSupport

6. Which of the following methods is never called for handler classes that imple-
ment only the Tag interface? (Select one)

a setParent()

b doStartTag()

c doAfterbody()

d doEndTag()

7. Which of the following is a valid return value for doAfterBody()? (Select one)

a EVAL_BODY_INCLUDE

b SKIP_BODY

c EVAL_PAGE

d SKIP_PAGE

8. Which element would you use in a TLD to indicate the type of body a custom
tag expects?

[__________________]

9. If the doStartTag() method returns EVAL_BODY_INCLUDE one time and
the doAfterBody() method returns EVAL_BODY_AGAIN five times, how
many times will the setBodyContent() method be called? (Select one)

a Zero
b One
c Two
d Five
e Six

10. If the doStartTag() method returns EVAL_BODY_BUFFERED one time
and the doAfterBody() method returns EVAL_BODY_BUFFERED five
times, how many times will the setBodyContent() method be called?
Assume that the body of the tag is not empty. (Select one)

a Zero
b One
c Two
d Five
e Six
350 CHAPTER 16 DEVELOPING “CLASSIC” CUSTOM TAG LIBRARIES

Licensed to Tricia Fu <tricia.fu@gmail.com>

11. How is the SKIP_PAGE constant used? (Select one)

a doStartTag() can return it to skip the evaluation until the end of the cur-
rent page.

b doAfterBody() can return it to skip the evaluation until the end of the cur-
rent page.

c doEndTag() can return it to skip the evaluation until the end of the cur-
rent page.

d It is passed as a parameter to doEndTag() as an indication to skip the evalua-
tion until the end of the current page.

12. Which of the following can you use to achieve the same functionality as pro-
vided by findAncestorWithClass()? (Select one)

a getParent()

b getParentWithClass()

c getAncestor()

d getAncestorWithClass()

e findAncestor()

13. Consider the following code in a tag handler class that extends TagSupport:

 public int doStartTag()
 {
 //1
 }

Which of the following can you use at //1 to get an attribute from the applica-
tion scope? (Select one)

a getServletContext().getAttribute("name");

b getApplication().getAttribute("name");

c pageContext.getAttribute("name",PageContext.APPLICATION_SCOPE);

d bodyContent.getApplicationAttribute("name");

14. Which types of objects can be returned by PageContext.getOut()?
(Select two)

a An object of type ServletOutputStream
b An object of type HttpServletOutputStream
c An object of type JspWriter
d An object of type HttpJspWriter
e An object of type BodyContent

15. We can use the directive <%@ page buffer="8kb" %> to specify the size of
the buffer when returning EVAL_BODY_BUFFERED from doStartTag().

a True
REVIEW QUESTIONS 351

b False

Licensed to Tricia Fu <tricia.fu@gmail.com>

C H A P T E R 1 7

Developing “Simple”

custom tag libraries
17.1 Understanding SimpleTags 353
17.2 Incorporating SimpleTags in JSPs 357
17.3 Creating Java-free libraries with tag files 364
17.4 Summary 371

17.5 Review questions 372
EXAM OBJECTIVES

 10.4 Describe the semantics of the “Simple” custom tag event model when the event
method (doTag) is executed; write a tag handler class; and explain the constraints
on the JSP content within the tag.
(Sections 17.1 and 17.2)

 10.5 Describe the semantics of the Tag File model; describe the web application structure
for tag files; write a tag file; and explain the constraints on the JSP content in the
body of the tag.
(Section 17.3)
352

Licensed to Tricia Fu <tricia.fu@gmail.com>

So far, you’ve seen the interfaces for classic tag development (Tag, IterationTag,
and BodyTag) and their associated event methods (doStartTag(), doAfter-
Body(), and doEndTag()). These constructs give you a great deal of flexibility in
building custom tag libraries, but coding can be time-consuming and complex. The
JSP 2.0 standard reduces the burden by providing an alternate means of creating your
tag libraries: the simple tag model.

With this new methodology, you only need to keep track of one interface, Simple-
Tag, and a single event method, doTag(). This way, you can concentrate on Java
code instead of directing the web container’s operation. JSP 2.0 also gives you different
options for processing body content and tag attributes.

In addition, the new specification provides a new means of library development
with tag files. Tag file processing is similar to regular JSP tag processing, but doesn’t
use tag library descriptors or tag handlers. Instead, tag files are coded with regular JSP
syntax, and can include script elements. These building blocks simplify the process of
library creation and make it more modular.

In practical web development, you can choose whatever tag library development
method you prefer. But for the SCWCD exam, you need to become familiar with each.
So, having discussed the classic way of building custom tag libraries, let’s explore the
simple method.

17.1 UNDERSTANDING SIMPLETAGS

Building custom tag libraries with SimpleTags is similar to the process we described
in chapter 16. You still need to create a Java tag handler, reference the class in a tag
library descriptor (TLD), and include the TLD in your JSP.

The differences between classic and simple development concern the processing
needed in a Java-based tag handler. SimpleTag classes use fewer methods, interface
differently with body content, and have different implicit objects available. This sec-
tion covers the principles behind SimpleTags and how they reduce the difficulty of
building tag libraries.

17.1.1 A brief example

Before we get into the theory of SimpleTags, you can appreciate how easy they are
to use by looking at example code. Listing 17.1 shows a Java tag handler that sends a
message to the JSP output.

package myTags;

import java.io.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class SimpleTagExample extends SimpleTagSupport

Listing 17.1 SimpleTagExample.java
UNDERSTANDING SIMPLETAGS 353

{
 public void doTag() throws JspException, IOException

Licensed to Tricia Fu <tricia.fu@gmail.com>

 {
 getJspContext().getOut().print(
 "I can't believe it's so simple!"
);
 }
}

That’s it! There are no concerns with SKIP_BODY, EVAL_BODY, EVAL_PAGE, or
any of the return values associated with classic tags. There’s no need to consider differ-
ent interfaces depending on body content or iterations. Instead, there’s just one
method, doTag(), and a single line of code to send output to the JSP.

The web container can access this class through a tag library descriptor in the same
way as a Tag or BodyTag class. For example, the snippet below matches the Simple-
TagExample class with a tag name called “message”:

<taglib>
 ..
 <tag>
 <name>message</name>
 <tag-class>myTags.SimpleTagExample</tag-class>
 <body-content>empty</body-content>
 <description>Sends a message to the JSP</description>
 </tag>
 ..
</taglib>

Then, the “message” tag can be inserted into a JSP page just as with the classic model.
The superclass of SimpleTagExample, SimpleTagSupport, makes all of

this possible. To see why this is the case, you need to understand both it and its inter-
face, SimpleTag. In particular, we’ll present the methods contained in SimpleTag
and its life cycle.

17.1.2 Exploring SimpleTag and SimpleTagSupport

In the classic method of building custom tag libraries, Java classes implement the
BodyTag interface if body content needs processing, the IterationTag interface
if multiple operations are required, or the Tag interface if neither is necessary. With
the simple model, the SimpleTag interface can be used in all three cases. The rela-
tionship between these interfaces is shown in figure 17.1.

Figure 17.1
354 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

JSP tag

interfaces

Licensed to Tricia Fu <tricia.fu@gmail.com>

The JSP 2.0 specification also provides a new adapter class for tag classes. Just as classic
tag handlers extend BodyTagSupport or TagSupport, classes in the simple
model can extend SimpleTagSupport. This class contains all of the methods
needed to implement SimpleTag, and provides additional methods for extracting
information from the web container.

Using the SimpleTag interface—methods and life cycle

Like those of Tag and BodyTag, the methods in the SimpleTag interface serve two
purposes. First, they allow you to transfer information between your Java class and the
JSP. Second, they are invoked by the web container to initialize SimpleTag opera-
tion. Table 17.1 lists these methods with descriptions.

These methods are listed in the order that they are invoked in the SimpleTag life
cycle, which has three main steps.

Step 1 Initialize the information associated with the SimpleTag

After the web container creates an instantiation of the SimpleTag class, it calls the
setJspContext() method. This method returns an instance of the Jsp-
Context class, which is the superclass of PageContext—the object returned by
the setPageContext() method in the Tag or BodyTag interface. Like the
PageContext, the JspContext allows your Java class to access scoped attributes
and implicit variables.

Most of the JspContext methods are similar to those in the PageContext
class, but there are a few different methods that can be very useful. First, as shown in
the example, the getOut() method returns a JspWriter that you can use to send
information to the JSP output stream. Also, there are two methods, getExpression-
Evaluator() and getVariableResolver(), that allow you to access the
Expression Language handling capability of the container. An important thing to
keep in mind is that, while the PageContext relies on J2EE servlet processing, the
JspContext class is meant to be technology-neutral and able to interface with dif-
ferent packages or languages.

After the JspContext has been initialized for the SimpleTag, the web con-

Table 17.1 Methods of the SimpleTag interface

Name Description

setJspContext() Makes the JspContext available for tag processing

setParent() Called by the web container to make the parent tag available

setJspBody() Makes the body content available for tag processing

doTag() Called by the container to begin SimpleTag operation

getParent() Called by the Java class to obtain its parent JspTag
UNDERSTANDING SIMPLETAGS 355

tainer calls setParent(). This method is invoked only if the SimpleTag is

Licensed to Tricia Fu <tricia.fu@gmail.com>

surrounded by another set of tags. Because setParent() returns a JspTag object,
the returned parent tag can implement the Tag, BodyTag, IterationTag, or the
SimpleTag interface.

Step 2 Make body content available for SimpleTag processing

If there is any JSP code inside the tags, the web container invokes setBody() to
make it available for the Java class. The method’s return type is JspFragment. This
class will be fully discussed later in this chapter, but for now, it is important to under-
stand that a JspFragment contains regular JSP code (HTML, XML, tags, text) with-
out scripts. So you can’t include JSP declarations, expressions, or scriptlets inside
SimpleTags. But EL terms can be added to the JspFragment.

Step 3 Invoke doTag()

The doTag() method of the SimpleTag interface combines the functions of the
Tag’s doStartTag(), doAfterBody(), and doEndTag() methods. It doesn’t
return any values, and when it finishes, the web container returns to its previous pro-
cessing tasks. Instead of calling special methods, you can control all of the iteration and
body processing with regular Java commands.

It is important to understand why the SimpleTag interface is able to streamline
the development of custom tag libraries. The reason has to do with JSP scripts. A great
deal of the extra processing performed by a classic tag occurs because of the need to
keep track of JSP scripts in the page. For example, if the tag body relies on a JSP vari-
able declaration, then the tag processing needs to be able to access that variable.

With SimpleTags, this isn’t an option. When the web container processes
SimpleTags, it doesn’t take JSP scripts into account. This makes for simpler cod-
ing and faster operation, but you need to keep this constraint in mind—both for the
exam and your own web development.

Using SimpleTagSupport

The SimpleTagSupport class allows you to implement the SimpleTag interface
without having to code each of its methods by yourself. Instead, it provides for each of
the methods mentioned above, and three others, which are listed in table 17.2.

These methods are similar to those in the TagSupport and BodyTagSupport
classes, with two exceptions. First, the first two methods return a JspContext and

Table 17.2 Additional methods provided by the SimpleTagSupport class

Name Description

getJspContext() Returns the JspContext for processing in the tag

getJspBody() Returns the JspFragment object for body processing in the tag

findAncestorWithClass() Returns the ancestor tag with the specified class
356 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

a JspFragment instead of a PageContext and a BodyContent object. Second,

Licensed to Tricia Fu <tricia.fu@gmail.com>

SimpleTagSupport leaves out many of the methods in TagSupport and Body-
TagSupport that deal with tag processing, such as release().

Now that you’ve seen how the SimpleTag interface and the SimpleTag-
Support class functions, you can appreciate why Sun included them in the new
JSP specification. In the next section, we will use these data structures to build prac-
tical JSPs.

Quizlet
Q: Which of the following methods aren’t immediately available for a sub-

class of SimpleTagSupport?
a getJspBody();

b getJspContext().getAttribute("name");

c getParent();

d getBodyContent();

A: The answer is option d. The getBodyContent() method is provided
by the BodyTagSupport class, and returns a BodyContent object.
Instead, SimpleTagSupport invokes the getJspBody() method,
which returns a JspFragment.

17.2 INCORPORATING SIMPLETAGS IN JSPS

The process of building a SimpleTag library and using its JSP tags is similar to that
for classic tag libraries, but there are important differences between the two. In partic-
ular, SimpleTags process tag attributes and body content differently than Tag,
IterationTag, or BodyTag classes. In this section, we’ll make these characteristics
apparent by building a tag library and JSP for calculating square roots.

Each SimpleTag class performs its main processing inside the doTag()
method, but the structure of the class also depends on attribute tags and body content.
To present these classes, we’ll proceed from the simple to complex. This means start-
ing with an empty SimpleTag.

17.2.1 Coding empty SimpleTags

Empty SimpleTag classes are used to send static information to the JSP. In this case,
we’ll start with a short class that sends a simple mathematical expression to a Jsp-
Writer. This may seem trivial, but we’ll add more as we explore the SimpleTag
interface in greater depth.

Listing 17.2 presents MathTag.java, located in the myTags package.

package myTags;

import java.io.*;

Listing 17.2 MathTag.java
INCORPORATING SIMPLETAGS IN JSPS 357

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

Licensed to Tricia Fu <tricia.fu@gmail.com>

public class MathTag extends SimpleTagSupport
{
 int x = 289;

 public void doTag() throws JspException, IOException
 {
 getJspContext().getOut().print(
 "The square root of " + x +

 " is " + Math.sqrt(x) + "."
);
 }
}

After the web container creates an instance of MathTag, it will make the JspContext
available. Since there are no nested tags or body content, it will then invoke the
doTag() method directly.

A tag library descriptor is needed to tell the web container how to match the
MathTag class with its JSP tag. Listing 17.3 shows MathTag.tld, which also
informs the web container that the MathTag class has no attributes and doesn’t pro-
cess body content.

<!DOCTYPE taglib PUBLIC
 "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/j2ee/dtd/web-jsptaglibrary_1_2.dtd">
<taglib>
 <uri>www.manning.com/scwcd/math</uri>
 <tlib-version>1.0</tlib-version>
 <jsp-version>2.0</jsp-version>
 <tag>
 <name>sqrt</name>
 <tag-class>myTags.MathTag</tag-class>
 <body-content>empty</body-content>
 <description>
 Sends a math expression to the JSP
 </description>
 </tag>
</taglib>

In this example, we’ll use the URI specified in the TLD instead of updating the
deployment descriptor. We lose the capability of centralized library referencing, but
the code is simpler and we can create the JSP directly. The JSP itself, shown in
listing 17.4, tells the web container the library’s URI, and then uses the empty tag to
display the math statement.

Listing 17.3 MathTag.tld
358 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

Licensed to Tricia Fu <tricia.fu@gmail.com>

<%@ taglib prefix="math" uri="www.manning.com/scwcd/math" %>
<html><body>
 <math:sqrt />
</body></html>

The result, shown in figure 17.2, shows that the JSP
works as desired.

Now that you’ve seen how to build a basic SimpleTag-
based JSP, we can add more powerful features. Next,
we’ll add dynamic attributes to the SimpleTag.

17.2.2 Adding dynamic attributes to SimpleTags

In the previous chapter, we showed how tags implementing Tag, IterationTag,
and BodyTag process attributes with JSP 1.x. By adding a setter method for the given
attribute (setXYZ() for the XYZ attribute), you can incorporate its value into your
Java class. Then, you need to update the TLD to tell the web container what attributes
it should accept.

This process remains the same using the simple model of tag library creation, but
what if you don’t know the name of the tag’s attributes? What if you don’t know how
many there are? With JSP 1.x, you face serious problems. But JSP 2.0 provides the
DynamicValues interface, which allows you to process multiple, unspecified
attributes with a single method, setDynamicAttribute().

To show how this works, we’re going to add static and dynamic attributes to the
MathTag example. This time, the JSP will display a table of math functions whose
entries are determined by the tag’s attributes. Listing 17.5 updates MathTag.tld to
tell the web container what kind of attributes to expect in the JSP.

<!DOCTYPE taglib PUBLIC
 "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/j2ee/dtd/web-jsptaglibrary_1_2.dtd">
<taglib>
 <uri>www.manning.com/scwcd/math</uri>
 <tlib-version>1.0</tlib-version>
 <jsp-version>2.0</jsp-version>
 <tag>
 <name>functions</name>
 <tag-class>myTags.MathTag</tag-class>
 <body-content>empty</body-content>
 <attribute>

Listing 17.4 math.jsp

Figure 17.2 Static output

from an empty SimpleTag

instance

Listing 17.5 MathTag.tld (Updated)
INCORPORATING SIMPLETAGS IN JSPS 359

 <name>num</name>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 <dynamic-attributes>

 true

 </dynamic-attributes>

 <description>
 Sends a math expression to the JSP

 </description>
 </tag>
</taglib>

The body content remains empty, but there are now two elements for attributes. The
first, <attribute>, tells the web container about a static attribute called num,
which is required and can be dynamically calculated at runtime. The second,
<dynamic-attributes>, tells the web container that the tag may contain other
attributes besides num, and it should create a Map to hold their names and values.

Listing 17.6 updates the MathTag.java code to reflect the new attribute pro-
cessing. This class creates a String called output that is updated by the set-
DynamicAttribute() method. The web container calls this method each time it
encounters an attribute not mentioned in the TLD. Once it finishes reading the
attributes, it invokes doTag(), which sends the String to the JSP for display.

package myTags;

import java.io.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class MathTag extends SimpleTagSupport
 implements DynamicAttributes

{

 double num = 0;

 String output = "";

 public void setNum(double num)

 {

 this.num = num;

 }

 public void setDynamicAttribute(String uri, String localName,

 Object value) throws JspException
 {
 double val = Double.parseDouble((String)value);
 if (localName == "min")
 {

Listing 17.6 MathTag.java (Updated)
360 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

 output = output + "<tr><td>The minimum of "+num+" and "+
 val + "</td><td>" + Math.min(num, val) + "</td></tr>";

Licensed to Tricia Fu <tricia.fu@gmail.com>

 }
 else if (localName == "max")
 {
 output = output + "<tr><td>The maximum of "+num+" and "+
 val + "</td><td>" + Math.max(num, val) + "</td></tr>";
 }
 else if (localName == "pow")
 {

 output = output + "<tr><td>"+num+" raised to the "+val+
 " power"+"</td><td>"+Math.pow(num, val)+"</td></tr>";
 }
 }

 public void doTag() throws JspException, IOException
 {
 getJspContext().getOut().print(output);
 }
}

After the web container initializes the JspContext and parent tag (if necessary), it
processes the tag’s attributes. If the attribute is static, such as num, it calls the setter
method with the name of the attribute—setNum() in our example. If the attribute
isn’t mentioned in the TLD, then it is dynamic, and the container invokes set-
DynamicAttribute().

Since this method does most of the work in the example, it’s important to learn
how it functions. It provides three items of information: a URI String representing
the attribute’s namespace, a String containing its name, and the Object contain-
ing its value. After converting the value into a double, MathTag continues processing
according to the attribute’s name. If the name is min, max, or pow, then output is
updated with a new table row.

Listing 17.7 shows how this tag is coded in the JSP. Note that the static attribute,
num, needs to be included first. This way, its value will be available when the rest of
the attributes are processed.

<%@ taglib prefix="math" uri="www.manning.com/scwcd/math" %>
<html><body>
 Math Functions:<p>

 <table border="1">

 <math:functions num="${3*2}" pow="2" min="4" max="8"/>

 </table>

</body></html>

The use of HTML tables and EL may seem unnecessary. But in the exam, Sun will
make the JSP code as complicated as possible. So make sure you have a solid grasp of

Listing 17.7 MathTag.jsp (Updated)
INCORPORATING SIMPLETAGS IN JSPS 361

both topics.

Licensed to Tricia Fu <tricia.fu@gmail.com>

We can specify the num attribute with EL because
the TLD sets its <rtexprvalue> tag to true.
But the dynamic attributes don’t have this option.
If you try to use EL to set the values of pow, min,
and max, you’ll get an error.

Figure 17.3 shows the JSP’s output.
Although the DynamicAttributes inter-

face is new, you can still extend its usage to the
classic Tag, IterationTag, and BodyTag
classes. But as we’ve shown, building Simple-
Tags requires less code and complexity. Let’s fin-
ish our discussion on this topic by looking at how
SimpleTags process body content.

17.2.3 Processing body content inside SimpleTags

In the classic model, BodyTag classes acquire the text and code inside their JSP tags
by invoking getBodyContent(). This returns a BodyContent object that can be
converted into a String or a Reader. This means that you can parse through the
body and alter it if needed.

These options aren’t available with SimpleTags. If you want to access the body,
the getJspBody() method will return a JspFragment. This object only has two
methods. The first, getJspContext(), returns the JspContext associated with
the fragment. The second, invoke(), executes the JSP code and directs its output
to the JspWriter. Neither method allows you to access and manipulate the body’s
contents as you can in the classic model.

Further, a SimpleTag’s body must not contain scripts—no declarations, expres-
sions, or scriptlets. So it is invalid for a SimpleTag’s tag library descriptor to specify
its <body-content> as JSP. Therefore, if you want to process a SimpleTag’s
body, you need to set its <body-content> to tagdependent or scriptless.
This is an important constraint to remember.

Because SimpleTag development doesn’t add any new capabilities for processing
body content, we will present code snippets instead of a new example. The code below
shows how the doTag() method acquires the SimpleTag’s body and directs it to
the JSP for display:

public void doTag() throws JspException, IOException
{
 getJspContext().getOut().print(output);
 getJspBody().invoke(null);
}

Figure 17.3 Dynamic output from

a SimpleTag implementing

DynamicAttributes
362 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

Licensed to Tricia Fu <tricia.fu@gmail.com>

Note that the invoke() method requires an argument specifying the JspWriter
that will receive the JspFragment’s output. In this case, the null argument directs
the output to the JspWriter returned by getJspContext().getOut().

As shown here, the only change required in the TLD is the <body-content>.
Since JSP is invalid and empty is erroneous, we’ll set the value to tagdependent:

<tag>

 <name>functions</name>
 <tag-class>myTags.MathTag</tag-class>
 <body-content>tagdependent</body-content>
 …
</tag>

For the JSP, we’ll add a new row to the table by including it as body content. This is
shown in the code that follows. Because the SimpleTag executes the JspFragment
last, this will be the last row of the table.

<math:functions num="${3*2}" pow="2" min="4" max="8">
 <td>This is the body of the SimpleTag.</td>

</math:functions>

Figure 17.4 shows the output of the new JSP.
Although the SimpleTag class reduces

the amount of Java needed to create custom
tag libraries, it still requires building and
compiling Java classes. To the creators of
the JSP 2.0 specification, this is still too
much work. So they came up with an even
simpler way of building tag libraries. With
tag files, you don’t need TLDs or Java at all!
In the next section, we’ll see how this new
method works.

Quizlet

Q: What is the main difference between a TLD for SimpleTags and a
TLD for a classic Tag?

A: SimpleTag TLDs cannot set their <body-value> elements equal to
JSP. This is because a SimpleTag cannot process script elements in
body content.

Figure 17.4 Output updated with

SimpleTag body content
INCORPORATING SIMPLETAGS IN JSPS 363

Licensed to Tricia Fu <tricia.fu@gmail.com>

17.3 CREATING JAVA-FREE LIBRARIES
WITH TAG FILES

JSTL and EL reduce the amount of Java in a JSP and SimpleTags reduce the
amount of Java in a tag handler. But tag files remove the need for Java programming
altogether. As long as you understand the JSP syntax, you can now build custom tags
for your pages.

We’ll begin our discussion of tag files with a simple example. Next, we’ll cover the
directives that enable you to communicate information to the web container. Finally,
we’ll look at fragments and how they are processed with tag file actions.

17.3.1 Introducing tag files

At its simplest, a tag file is a file made up of JSP code that has a .tag or .tagx exten-
sion. It can include EL expressions, directives, and custom and standard tags. Unlike
SimpleTag JSPs, tag files can also contain script elements. In fact, the only JSP ele-
ments that can’t be used in tag files are page attributes.

To see how tag files work, let’s start with a simple example. Listing 17.8 presents
example.tag, which displays a sequence of six numbers.

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>
<c:forTokens items="0 1 1 2 3 5" delims=" " var="fibNum">
 <c:out value="${fibNum}"/>
</c:forTokens>

Listing 17.8 contains just regular JSP code using the JSTL forTokens action and an
EL expression. The JSP presented in listing 17.9 accesses this tag and displays its output.

<%@ taglib prefix="ex" tagdir="/WEB-INF/tags" %>
<html><body>
 The first six numbers in the Fibonacci sequence are:
 <ex:example/>
</body></html>

The code may look trivial, but this new capability is important. The key is simplicity.
You don’t need a background in Java to create custom tags with tag files. You don’t have
to compile Java classes and keep track of their packages. You don’t even need tag library
descriptors. Thanks to the JSP 2.0 specification, any developer of presentation logic
can now create a custom tag library.

The new specification also makes it simple to integrate tag files within a JSP. There

Listing 17.8 example.tag

Listing 17.9 example.jsp
364 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

are only two steps:

Licensed to Tricia Fu <tricia.fu@gmail.com>

1 Add a taglib directive to the JSP with a prefix attribute and the tagdir
attribute equal to /WEB-INF/tags.

2 Place a tag containing the prefix and the name of the tag file (without the exten-
sion) wherever you want the file’s JSP code invoked.

This brings up an important question. If Java-based tags need TLDs to locate their
classes, how do these tags locate their tag files? To answer this, we need to look at how
the web container accesses and processes tag files.

17.3.2 Tag files and TLDs

In the example JSP above, the tagdir attribute is set to /WEB-INF/tags. This is
necessary since the web container automatically looks there for tag files. Then, the
container builds an implicit tag library and TLD for this directory and each subdirec-
tory beneath it. The good news is that you don’t have to create TLDs for tag files. The
bad news is that your tag files must be in /WEB-INF/tags/ or a subdirectory.

But if you deploy your tag files inside a JAR, the situation changes. In this case, you
need to create a tag library descriptor for your files. This TLD is similar to regular
TLDs, but instead of matching tags to tag handlers, it matches names of tag files to
their paths.

To make this possible, tag file TLDs use <tag-file> elements in place of <tag>
elements. The definition of a <tag-file> element is as follows:

 <!ELEMENT tag-file (description?, display-name?,
 icon?, name, path, example?, tag-extension?) >

The only necessary subelements are <name>, which specifies the tag file name without
its suffix, and <path>, which specifies the file’s path from the archive’s root. There-
fore, <path> must begin with /META-INF/tags. Here is an example TLD for an
archived tag file:

<taglib>
 …
 <uri>www.manning.com/scwcd/example</uri>
 <tag-file>
 <name>example</name>
 <path>/META-INF/tags/example.tag</path>
 </tag-file>
</taglib>

This TLD must be located in the META-INF directory and the tag file(s) must be
placed in META-INF/tags or a subdirectory. An example directory structure is
shown here:

META-INF/
example.tld
tags/
CREATING JAVA-FREE LIBRARIES WITH TAG FILES 365

example.tag

Licensed to Tricia Fu <tricia.fu@gmail.com>

Since the tag file isn’t located in or under /WEB-INF/tags, you can’t use the
tagdir attribute in the taglib directive. Instead, you need to specify the TLD’s
URI (www.manning.com/scwcd/example) using the URI attribute. For this
example, the following JSP directive will tell the web container where to find the tag
file’s TLD:

<%@ taglib prefix="ex" uri="www.manning.com/scwcd/example" %>

Other important differences between tag file TLDs and tag TLDs concern the
<attribute> and <body-content> elements. Tags furnish this information in
their TLDs, but tag files can’t. Instead, tag files use a special set of directives. They tell
the web container how to process the tag file, and it is important to understand how
they work.

17.3.3 Controlling tag processing with tag file directives

JSPs contain three different kinds of directives: page, taglib, and include. Tag
files remove the page directive and add three more. The first, variable, creates
and initializes a variable for use in tag processing. The second, tag, tells the web con-
tainer how to process the tag file. The third, attribute, describes the attributes
that can be used in the tag. We’ll investigate each of these, and provide snippets of
example code.

Creating JSP variables with the variable directive

In the previous chapter, we showed how to declare JSP variables in tag library descrip-
tors by adding <variable> elements. Then, you can assign and display the variable
with JSTL actions and EL expressions.

Tag files provide a similar capability with the variable directive. The attributes
of this directive are the same as the <variable> subelements, using scope to define
the variable’s visibility, and name-given and name-from-attribute to provide
the variable’s name. The only difference is the alias attribute, which provides a local
name for the variable when its real name is determined by an attribute value (using
name-from-attribute).

As an example, if the tag file contains the directive

<%@ variable name-given="x" %>

then the JSP can set the variable’s value with the JSTL action

<c:set var="x">
 Hooray!
</c:set>

and display this value inside the JSP with ${x}.
The important point about the variable directive is that you don’t need to

rely on script declarations to declare variables in a JSP. But this is a minor function.
366 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

The tag directive accomplishes much more.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Using the tag directive in tag files

The first new directive, tag, works like the page directive in a JSP. It provides the web
container with settings that apply to the entire file. Table 17.3 describes the attributes
that can be specified within a tag file’s tag directive.

One attribute that has no JSP counterpart is dynamic-attributes. This works
like the TLD <dynamic-attributes> subelement, but instead of directing
attributes to a Java method, the web container updates a local variable specified by
the directive. For example, the tag file that follows uses the tag directive to send
dynamic attribute data to attrib. This data is then displayed using the JSTL
forEach action.

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>
<%@ tag dynamic-attributes="attrib" %>
<c:forEach items="${attrib}" var="att">
 ${att.value}

</c:forEach>

The JSP code shown next accesses this tag file (dynatt.tag) and sets the names
and values of the tag’s attributes. When the JSP is invoked, it will display a list of
these values.

<%@ taglib prefix="dyn" tagdir="/WEB-INF/tags" %>
<html><body>
 <dyn:dynatt first="first" second="second" third="third"/>

Table 17.3 Tag file attributes within the tag directive

Name Description

body-content Similar to the TLD sublelement—can be empty, tagdependent, or
scriptless. Set to scriptless by default.

description Optional String statement describing the tag file.

display-name String used by XML tools. Set to the name of the tag file (without the
extension by default.

dynamic-attributes Tells the container to create a named Map to hold unspecified attributes
and their values.

example String providing an instance of the tag’s usage.

import Adds a class, interface, or package to the tag processing.

isELIgnored Specifies whether EL constructs will be ignored.

language Sets the programming language used in the tag file. “Java” by default.

large-icon Path to the large image representing the tag.

page-encoding Specifies the character encoding of the tag file.

small-icon Path to the small image representing the tag.
CREATING JAVA-FREE LIBRARIES WITH TAG FILES 367

</body></html>

Licensed to Tricia Fu <tricia.fu@gmail.com>

Now that you’ve learned how to specify dynamic attributes in tag files, it’s important
to understand how to add static attributes. This requires the attribute directive.

Adding static attributes with the attribute directive

Dynamic attributes provide flexibility, but if you already know your tag’s attributes,
you can inform the web container in advance with static attributes. Traditional tags
have <attribute> subelements in TLDs for this purpose. But to set attributes in tag
files, you need attribute directives.

The attributes associated with the attribute directive are similar to the sub-
elements of the TLD’s <tag> element. The name attribute provides identifica-
tion, required informs the web container whether the attribute must be present,
and rtexprvalue tells the container that the attribute’s value can be deter-
mined at runtime.

A brief example will show how attribute directives are used in tag files. The
following tag file snippet sends output to the JSP according to the value of x.

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>
<%@ attribute name="x" required="true" %>
<c:choose>
 <c:when test='${x == "yes"}'>
 Yippee!
 </c:when>
 <c:otherwise>
 Rats!
 </c:otherwise>
</c:choose>

Then, the following JSP snippet uses the tag file and sets its attribute:

<%@ taglib prefix="attr" tagdir="/WEB-INF/tags" %>
<html><body>
 <attr:statatt x="yes" />
</body></html>

The attribute directive also allows you to insert JSP code into static attributes by
setting its fragment attribute equal to true. However, to process this fragment, you
need to look outside tag file directives, and concern yourself with standard actions.

17.3.4 Processing fragments and body content

with tag file actions

JSPs provide a set of standard actions to direct the web container’s processing of the
page. Tag files can use all of these, and provide two more. The first, jsp:invoke,
makes use of the fragment declared in the attribute directive. The second,
jsp:doBody, processes the tag’s body content.
368 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

Licensed to Tricia Fu <tricia.fu@gmail.com>

Manipulating fragments with the jsp:invoke action

SimpleTag classes retrieve body content by calling getJspBody(), which returns
a JspFragment. Then, to direct the fragment’s output to a JspWriter, the tag
handler calls the fragment’s invoke() method. This method’s argument determines
which JspWriter object will receive the fragment’s output.

The jsp:invoke action performs essentially the same function as invoke(),
but is used for attributes declared as fragments, not for body content. Also, this action
can do more with the JspFragment than just directing it to a JspWriter. It can
convert the fragment to a String or a Reader object. However, just as with
SimpleTags, tag files cannot process script elements (declarations, expressions,
scriptlets) inside body content.

Table 17.4 lists and describes the attributes needed to configure this action in
tag files.

Of these attributes, only fragment is required in the jsp:invoke action. If neither
var nor varReader is set, then the JspFragment will be directed to the default
JspWriter. If one of var or varReader is set, but scope isn’t, then the frag-
ment’s scope will be set to page.

Listing 17.10 presents an example tag file that uses the jsp:invoke action. First,
it specifies a required attribute named frag, whose value will be contained in a Jsp-
Fragment. Then, depending to the value of proc, it returns the fragment to the JSP
as a String variable.

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>
<%@ attribute name="frag" required="true" fragment="true"%>
<%@ attribute name="proc" required="true" %>
<c:if test='${proc == "yes"}'>
 <jsp:invoke fragment="frag"/>
</c:if>

Table 17.4 Tag file attributes within the tag directive

Name Description

fragment Identifies the JspFragment for processing.

var Name of the String used to contain the JspFragment Cannot be used
with varReader.

varReader Name of the Reader used to contain the JspFragment. Cannot be used with var.

scope Scope of the stored JspFragment. Must be page, request, session,
or application.

Listing 17.10 invokeaction.tag
CREATING JAVA-FREE LIBRARIES WITH TAG FILES 369

Licensed to Tricia Fu <tricia.fu@gmail.com>

Listing 17.11 presents the JSP needed to test this tag file. First, it incorporates the tag
and sets its proc attribute to yes. Then, using the <jsp:attribute> action, it
specifies a line of JSP code to serve as the value of the frag attribute.

<%@ taglib prefix="inv" tagdir="/WEB-INF/tags" %>
<html><body>
 <inv:invokeaction proc="yes">
 <jsp:attribute name="frag">
 Two + two = ${2+2}
 </jsp:attribute>
 </inv:invokeaction >
</body></html>

So far, you’ve seen all there is to know about setting and processing tag file attributes.
Now, let’s see how tag files make use of the information between the tags. To enable
you to process this body content, tag files provide the <jsp:doBody> action.

Processing body content with the jsp:doBody action

The jsp:doBody action works like jsp:invoke, but it receives the tag’s body
instead of a fragment attribute. It contains the same attributes as jsp:invoke,
except fragment. So, when a tag file receives body content, it can manipulate it in
three ways: display it with the default JspWriter, send it to a variable with the var
attribute, or store it as a Reader object with the varReader attribute.

The tag file in listing 17.12 processes the tag’s body content according to the att
attribute. When att equals “var,” it will be stored within a variable, and when att equals
“reader,” it will be stored in a Reader object. If att isn’t specified, the default Jsp-
Writer will display its output.

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>
<%@ attribute name="att" required="true" %>
<c:choose>
 <c:when test='${att == "var"}'>
 <jsp:doBody var="bodyvar" scope="application"/>
 </c:when>
 <c:when test='${att == "reader"}'>
 <jsp:doBody varReader="bodyReader" />
 </c:when>
 <c:otherwise >
 <jsp:doBody />
 </c:otherwise>
</c:choose>

Listing 17.11 invokeaction.jsp

Listing 17.12 bodyaction.tag
370 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

Licensed to Tricia Fu <tricia.fu@gmail.com>

The JSP in listing 17.13 performs two tasks. First, it accesses the tag file and sets the
att attribute to “var.” Then, using EL, it displays the variable containing the tag’s
body content.

<%@ taglib prefix="bod" tagdir="/WEB-INF/tags" %>
<html><body>
 <bod:bodyaction att="var">
 This is the tag body.
 </bod:bodyaction >
 ${bodyvar}
</body></html>

In an earlier chapter, we showed how JSPs (*.jsp) can be converted into JSP
documents (*.jspx) by using well-formed XML. The process of creating tag file doc-
uments (*.tagx) is very similar. The main task involves replacing tag file directives,
such as <%@ attribute … %>, with XML statements, such as <jsp:directive.
attribute … />.

This discussion ends our treatment of JSPs in general and tag library development
in particular. As you can see, there are many different methods of creating tag libraries.
If you are familiar with Java, you may want to use the simple model, but if you need
to incorporate scripts, the classic method may be best. But if you prefer building tags
with JSP code, you can’t do better than to use the tag files described here.

Quizlet
Q: In what directory should you place unarchived tag files? What directory

for archived tag files?
A: All unarchived tag files should be placed in /WEB-INF/tags or a sub-

directory underneath. All archived tag files should be placed in /META-
INF/tags or a subdirectory.

17.4 SUMMARY

One of Sun’s primary goals in releasing JSP 2.0 was to simplify JSP development. To
reduce the amount of Java in JSPs, they created Expression Language. To reduce the
amount of code in tag handlers, they came up with the SimpleTag interface. Finally,
to remove the need for tag handlers and TLDs altogether, they introduced tag files.

 The advantages of SimpleTags over Tags, BodyTags, and IterationTags
stem from their less-complex life cycles. With SimpleTags, there are no elaborate
flowcharts or multiple event-based tag handler methods. After the web container per-
forms its initialization, it only invokes one method, doBody(), which performs all
of the SimpleTag’s processing. JSP 2.0 also provides the SimpleTagSupport

Listing 17.13 bodyaction.jsp
SUMMARY 371

adapter class for additional capabilities.

Licensed to Tricia Fu <tricia.fu@gmail.com>

The drawback to SimpleTag operation involves its processing of body content.
The body content is encapsulated in a JspFragment object, which cannot con-
tain script elements such as declarations, expressions, or scriptlets. Further, Jsp-
Fragments have no built-in mechanisms for converting body content into Strings
or Readers.

Tag files are a fascinating addition to the traditional methods of tag library devel-
opment. By specifying a precise directory for tag file location, the new JSP specification
removes the need for tag library descriptors. Tag files still provide all of the informa-
tion normally contained in TLDs, but they use directives and actions instead. The tag
directive resembles the JSP’s page directive, and attribute and variable resem-
ble their corresponding TLD elements. Finally, the jsp:doBody and jsp:invoke
actions allow you to process JSP code in the tag body and tag attributes, respectively.

17.5 REVIEW QUESTIONS

1. What method should you use in a SimpleTag tag handler to access dyna-
mic variables?

a doTag()

b setDynamicAttribute()

c getParent()

d setDynamicParameter()

2. Which object does a SimpleTag tag handler use to access implicit variables?

a PageContext

b BodyContent

c JspContext

d SimpleTagSupport

3. Consider the following TLD excerpt:

 <body-content>
 empty
 </body-content>
 <attribute>
 <name>color</name>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <dynamic-attributes>
 true
 </dynamic-attributes>

If the name of the tag is tagname and its prefix is pre, which of the following
JSP statements is valid?

a <pre:tagname color="yellow" size=${sizenum} />
372 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

b <pre:tagname size="18" color="red"> </pre:tagname>

Licensed to Tricia Fu <tricia.fu@gmail.com>

c <pre:tagname color="${colorname}" size="22" font="verdana"></

pre:tagname>

d <pre:tagname color="green" size="30">font="Times New Roman"</

pre:tagname>

e <pre:tagname color="${colorname}" size="18"></pre>

4. If placed inside the body of a simple tag, which of the following statements
won’t produce “9”? (Select one)

a ${3 + 3 + 3}

b "9"

c <c:out value="9">

d <%= 27/3 %>

5. Which of the following methods need to be invoked in a SimpleTag to pro-
vide iterative processing? (Select one)

a setDynamicAttribute()

b getParent()

c getJspBody()

d doTag()

e getJspContext()

6. Which of the following values is invalid inside a SimpleTag’s <body-
content> subelement? (Select one)

a JSP

b scriptless

c tagdependent

d empty

7. Which of the following is a valid return value for the SimpleTag’s doTag()
method? (Select one)

a EVAL_BODY_INCLUDE

b SKIP_BODY

c void

d EVAL_PAGE

e SKIP_PAGE

8. Which tag file directive makes it possible to process dynamic attributes?

a taglib

b page

c tag

d attribute
REVIEW QUESTIONS 373

Licensed to Tricia Fu <tricia.fu@gmail.com>

9. Which of the following statements can’t be used to access a tag file from a JSP?
(Select one)

a <%@ taglib prefix="pre" uri="www.mysite.com/dir/" %>

b <%@ taglib prefix="pre" tagdir="/WEB-INF/tags" %>

c <%@ taglib prefix="pre" tagdir="/WEB-INF/tagfiles" %>

d <%@ taglib prefix="pre" tagdir="/WEB-INF/tags/myDirectory" %>

10. Which tag file action processes JspFragments in tag attributes?

a taglib

b jsp:invoke

c tag

d jsp:doBody

e attribute

11. Which JspFragment method is used to process body content in a SimpleTag?
(Select one)

a invoke()
b getOut()
c getJspContext()
d getBodyContent()

12. Which class provides an implementation of the doTag() method? (Select one)

a TagSupport

b BodyTagSupport

c SimpleTagSupport

d IterationTagSupport

e JspTagSupport

13. In what directory shouldn’t you place tag files? (Select one)

a /META-INF/tags/tagfiles
b /WEB-INF/
c /WEB-INF/tags/tagfiles/tagdir/taglocation
d /META-INF/tags/

14. Which type of object is returned by JspContext.getOut()? (Select one)

a ServletOutputStream

b HttpServletOutputStream

c JspWriter

d BodyContent
374 CHAPTER 17 DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

Licensed to Tricia Fu <tricia.fu@gmail.com>

15. Which of the following methods does the web container call first to initiate a
SimpleTag’s life cycle?

a setJspContext()
b setParent()
c getJspContext()
d getJspBody ()

e getParent()
REVIEW QUESTIONS 375

Licensed to Tricia Fu <tricia.fu@gmail.com>

C H A P T E R 1 8

Design patterns

18.1 Design patterns: a brief history 377
18.2 Patterns for the SCWCD exam 382
18.3 Summary 400

18.4 Review questions 401

EXAM OBJECTIVES

 11.1 Given a scenario description with a list of issues, select the design pattern that would
best solve the issues. The list of patterns you must know are:

• Intercepting Filter
• Model-View-Controller
• Front Controller
• Service Locator
• Business Delegate
• Transfer Object

(Sections 18.1 and 18.2)

 11.2 Match design patterns with statements describing potential benefits that accrue
from the use of the pattern, for any of the following patterns:

• Intercepting Filter
• Model-View-Controller
• Front Controller
• Service Locator
• Business Delegate
• Transfer Object
376

(Sections 18.1 and 18.2)

Licensed to Tricia Fu <tricia.fu@gmail.com>

INTRODUCTION

In our daily lives as designers and programmers, we are continuously developing our
problem-solving skills. With each problem we encounter, we immediately start con-
sidering the different ways it can be solved, including successful solutions that we have
used in the past for similar problems. Out of many possible solutions, we pick the one
that best fits our application. By documenting this solution, we can reuse and share
the information that we have learned about the best way to solve the specific problem.

Design patterns address the recurring design problems that arise in particular design
situations and propose solutions to them. Design patterns are thus successful solutions
to known problems. There are various ways to implement design patterns. These
implementation details are called strategies.

In this chapter, we will introduce the following J2EE design patterns that are
named in the exam objectives: Intercepting Filter, Model-View-Controller, Front
Controller, Service Locator, Business Delegate, and Transfer Object.

18.1 DESIGN PATTERNS: A BRIEF HISTORY

A design pattern is an abstraction of a solution at a very high level. Many designers and
architects have defined the term design pattern in various ways that suit the domain to
which they apply the patterns. Further, they have divided the patterns into different
categories according to their usage. Let’s look at some of them before we go into the
details of the J2EE patterns in the next section.

18.1.1 The civil engineering patterns

In the 1960s and ’70s, Christopher Alexander, professor of architecture and director
of the Center for Environmental Structure, along with his colleagues, wrote a number
of books describing and documenting the principles of civil engineering from a layper-
son’s point of view. Of them, one of the most widely known books is A Pattern Lan-
guage: Towns, Buildings, Constructions. It provides practical guidance on how to build
houses, construct buildings and parking lots, design a good neighborhood, and so
forth. The book examines how these simple designs integrate with each other to create
well-planned towns and cities.

As its title suggests, the book describes 253 patterns that are split into three broad
categories: towns, buildings, and construction.

18.1.2 The Gang of Four patterns

Software designers extended the idea of design patterns to software development. Since
features provided by the object-oriented languages, such as inheritance, abstraction,
and encapsulation, allowed them to easily relate programming language entities to
real-world entities, designers started applying those features to create common and
reusable solutions to recurring problems that exhibited similar patterns.
DESIGN PATTERNS: A BRIEF HISTORY 377

Around 1994, the now famous Gang of Four (GoF)—Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides—documented 23 such software design

Licensed to Tricia Fu <tricia.fu@gmail.com>

patterns in the book Elements of Reusable Object-Oriented Software. They classified the
patterns at the very top level into three types of categories based on their purpose: cre-
ational, structural, and behavioral, as shown in table 18.1.

At the second level, they classified the patterns as falling into one of the two scopes:
class or object. Thus, we have six types of patterns, as described in table 18.2.

Table 18.1 The GoF categories of design patterns

Type of GoF pattern Description

Creational Creational patterns deal with the ways to create instances of objects. The
objective of these patterns is to abstract the instantiation process and hide
the details of how objects are created or initialized.

Structural Structural patterns describe how classes and objects can be combined to
form larger structures and provide new functionality. These aggregated
objects can be either simple objects or composite objects themselves.

Behavioral Behavioral patterns help us define the communication and interaction
between the objects of a system. The purpose of these patterns is to
reduce coupling between objects.

Table 18.2 The GoF categories and scopes of design patterns

GoF Pattern Category Brief Description Examples

Creational

Creational class Creational class patterns use inheritance as a mecha-
nism to achieve varying class instantiation.

Factory Method

Creational object Creational object patterns are more scalable and
dynamic compared to the class creational patterns.

Abstract Factory
Singleton

Structural

Structural class Structural class patterns use inheritance to provide
more useful program interfaces by combining the func-
tionality of multiple classes.

Adapter (class)

Structural object Structural object patterns create composite objects by
aggregating individual objects to build larger structures.
The composition of the structural object pattern can be
changed at runtime, which gives us added flexibility
over structural class patterns.

Adapter (object)
Facade
Bridge
Composite

Behavioral

Behavioral class Behavioral class patterns use inheritance to distribute
behavior between classes.

Interpreter

Behavioral object Behavioral object patterns allow us to analyze the
patterns of communication between intercon-
nected objects, such as the included objects of a
composite object.

Iterator
Observer
Visitor
378 CHAPTER 18 DESIGN PATTERNS

Licensed to Tricia Fu <tricia.fu@gmail.com>

18.1.3 The distributed design patterns

Though the GoF patterns served well in designing and developing object-oriented sys-
tems in both distributed and nondistributed environments, they were not created with
the distributed nature of large-scale enterprise systems in mind. As the demands for
more distributed enterprise applications grew, the architects felt the need to document
the solutions to recurring problems as they experienced the same problem occurring
over and over again. They started extending and refining the patterns over a larger scale
and with a broader scope. One book that documents some 30 patterns at the architec-
tural level is CORBA Design Patterns, by Thomas J. Mowbray and Raphael C. Malveau.
Though the book focuses mainly on the Common Object Request Broker Architec-
ture (CORBA), the patterns described are applicable to a wide range of distributed
applications, including those that do not use CORBA.

The authors have categorized the design patterns at seven architectural levels:

• Global

• Enterprise

• System

• Application

• Macrocomponent

• Microcomponent

• Object

The authors have two basic arguments. The first is that software design involves mak-
ing choices, such as which details of an object should be abstracted and what should
be exposed, or which aspects of the objects are to be generalized and which one should
be specialized. These decisions are based on the facts surrounding the problem at hand.
The book terms such facts as primal forces, because they influence our choice of a par-
ticular pattern. The discussion on forces focuses on issues such as whether a pattern
increases performance, whether it aids in enhanced functionality, or whether it helps
to reduce complexity within modules.

The authors’ second argument is that not all design patterns scale well at all seven
architectural levels. Each pattern has a set of applicable levels, which is an important
feature that must be considered when using the pattern.

18.1.4 The J2EE patterns

With the advent of the J2EE, a whole new catalog of design patterns cropped up.
Since J2EE is an architecture in itself that comprises other architectures, including
servlets, JavaServer Pages, Enterprise JavaBeans, and so forth, it deserves its own set of
patterns specifically tailored to the various types of enterprise applications that the
architecture addresses.
DESIGN PATTERNS: A BRIEF HISTORY 379

The book Core J2EE Patterns: Best Practices and Design Strategies, by Deepak Alur,
John Crupi, and Dan Malks, describes the five tiers of the J2EE architecture:

Licensed to Tricia Fu <tricia.fu@gmail.com>

• Client

• Presentation

• Business

• Integration

• Resource

The book then explains 15 J2EE patterns that are divided among three of the tiers: pre-
sentation, business, and integration.

The five tiers in J2EE

A tier is a logical partition of the components involved in the system. Each tier is
loosely coupled with the adjacent tier. It is easier to understand the role of design pat-
terns once we fully grasp the different tiers involved in a J2EE application. The J2EE
architecture identifies the five tiers described in table 18.3.

Table 18.3 Tiers in the J2EE architecture

Tier Name Description

Client This tier comprises all the types of components that are clients of the enterprise
application. Examples of client components are a web browser, a hand held
device, or another application that accesses the services of the enterprise applica-
tion remotely.

Presentation This tier interfaces with the client tier and encapsulates the presentation logic. It
accepts the requests, handles authentication and authorization, manages client
sessions, delegates the business processing to the business tier, and presents the
clients with the desired response. The components that make up this tier are fil-
ters, servlets, JavaBeans, JSP pages, and other utility classes.

Business This tier is the heart of the enterprise application and implements the core busi-
ness services. It is normally composed of the Enterprise JavaBeans components
that handle all the business processing rules.

Integration The job of this tier is to seamlessly integrate different types of external resources
in the resource tier with the components of the business tier. The components
that make up the integration tier use various mechanisms like JDBC, J2EE
connector technology, or proprietary middleware to access the resource tier.

Resource This tier comprises the external resources that provide the actual data to the appli-
cation. The resources can either be data stores such as relational databases and
file-based databases, or systems such as applications running on mainframes,
other legacy systems, modern business-to-business (B2B) systems, and third-
party services like credit card authorization services.
380 CHAPTER 18 DESIGN PATTERNS

Licensed to Tricia Fu <tricia.fu@gmail.com>

The J2EE pattern catalog

Table 18.4 lists the 15 patterns of J2EE, with a brief description of each.

Table 18.4 J2EE design patterns

Name (s) Description

Presentation Tier

Decorating Filter/
Intercepting Filter

An object that sits between the client and the web components. It pre-pro-
cesses a request and post-processes the response.

Front Controller/
Front Component

An object that accepts all the requests from the client and dispatches or routes
them to appropriate handlers. The Front Controller pattern may divide the
above functionality into two different objects: the Front Controller and the Dis-
patcher. In that case, the Front Controller accepts all the requests from the cli-
ent and does the authentication, and the Dispatcher dispatches or routes them
to the appropriate handlers.

View Helper A helper object that encapsulates data access logic on behalf of the presenta-
tion components. For example, JavaBeans can be used as View Helper pat-
terns for JSP pages.

Composite View A view object that is made up of an aggregate of other view objects. For exam-
ple, a JSP page that includes other JSP and HTML pages using the include
directive or the include action is a Composite View pattern.

Service To Worker A kind of Model-View-Controller with the Controller acting as a Front Controller
but with one important point: here the Dispatcher (which is a part of the Front
Controller) uses View Helpers to a large extent and aids in view management.

Dispatcher View A kind of Model-View-Controller with the controller acting as a Front
Controller but with one important point: here the Dispatcher (which is a part
of the Front Controller) does not use View Helpers and does very little work in
view management. The view management is handled by the View compo-
nents themselves.

Business Tier

Business
Delegate

An object that resides on the presentation tier and on behalf of other presenta-
tion tier components calls remote methods on the objects in the business tier.

Transfer Object/
Replicate Object

A serializable object for transferring data over the network.

Session Façade/
Session Entity
Façade/
Distributed Façade

An object that resides in the business tier, acts as an entry point into the busi-
ness tier, and manages the workflow of business service objects, such as ses-
sion beans, entity beans, and Data Access Objects. The Session Facade itself
is usually implemented as a session bean.

Aggregate Entity An object (entity bean) that is made up of or is an aggregate of other entity beans.

Transfer Object
Assembler

An object that resides in the business tier and creates Transfer Objects on the
fly as and when required.

Value List Handler/
Page-by-Page
Iterator/Paged List

An object that manages execution of queries, caching, and processing of
results. Usually implemented as a Session Bean, serving a subset of the
fetched result set to the client as and when needed.
DESIGN PATTERNS: A BRIEF HISTORY 381

continued on next page

Licensed to Tricia Fu <tricia.fu@gmail.com>

Of the design patterns listed in table 18.4, five—Intercepting Filter, Front Controller,
Service Locator, Business Delegate, and Transfer Object—are mentioned in the exam
objectives. They also cover the Model-View-Controller pattern, which is considered
more of an architecture than a J2EE design pattern. In the rest of this chapter, we will
examine these design patterns in depth. Discussing the other patterns is beyond the
scope of this book, but they are frequently used as possible options in the single-choice
questions of the exam. It will be helpful if you study table 18.4 so that during the exam
you can eliminate the incorrect choices, thereby making it easier for you to select the
right answer.

18.2 PATTERNS FOR THE SCWCD EXAM

Table 18.5 lists the most important J2EE design patterns that you need to know for
the exam.

But before we discuss each of these, we want to describe the structure behind their doc-
umentation. This structure is called a template.

18.2.1 The pattern template

During the process of analyzing a problem, designing a solution, creating an action

Service Locator An object that performs the task of locating business services on behalf of
other components in the tier. Usually present in the presentation tier, it is used
by Business Delegates to look up business service objects.

Integration Tier

Data Access
Object

An object that talks to the actual underlying database and provides other appli-
cation components. It serves as a clean, simple, and common interface for
accessing the data, and for reducing the dependency of other components on
the details of using the database.

Service Activator An object that helps in processing of business methods asynchronously.

Table 18.4 J2EE design patterns (continued)

Name (s) Description

Table 18.5 Patterns required for the SCWCD exam

Name Other Name(s) Tier

Intercepting Filter Decorating Filter Presentation

Model-View-Controller Presentation

Front Controller Front Component Presentation

Service Locator Business

Business Delegate Business

Transfer Object Transfer Object, Replicate Object Presentation
382 CHAPTER 18 DESIGN PATTERNS

plan, and implementing the ideas, one of the most important tasks is to document

Licensed to Tricia Fu <tricia.fu@gmail.com>

each and every aspect of the process. This facilitates preserving the ideas in a systematic
manner so that they can be read, understood, and reused by others.

Design patterns are documented using a pattern template. The template is made
up of headings; each heading explains a different aspect of the pattern, such as the
cause of the problem, the situation in which the problem can occur, and the possible
facts to look for. Different organizations and pattern catalog writers use different sets
of headers and, therefore, their templates vary. However, their goal is the same: sys-
tematic documentation of the causes of the problems, the solutions provided by the
patterns, their consequences and implications, examples, related patterns, and so forth.

So before we start explaining the design patterns required for the exams, let’s first
look at the template that we have used to explain the design patterns in the following
sections. We have kept the template large enough to cover different aspects under dif-
ferent headings, while at the same time keeping it small enough to maintain simplicity.
Also, wherever possible, we have avoided long paragraphs of text and used a bulleted-
points approach while presenting the facts to make it easier to remember and refer-
ence. The following subsections describe the template headers.

Context

This section describes the context or the situation in which the problems can occur
and the given pattern that we can apply.

Patterns, if not used wisely or if applied in the wrong context, can turn out to be
anti-patterns. Various facts have to be sorted out, and the pros and cons of the pattern
have to be evaluated against these facts before applying the pattern. Therefore, it is
important to understand the situation in which the pattern may be applicable.

Problem

This section provides a common, day-to-day problem that we face in the given con-
text. Because so many developers and programmers have experienced this problem,
designers have developed standard solutions for it.

In many books or tutorials, you may find a separate heading called Intent to
describe the intent of the pattern. The Intent heading is suitable where the primary aim
of the pattern is to enhance the design of the overall system rather than attacking a par-
ticular problem. In the patterns described below, we have provided a Problem heading
instead, and the intent of the pattern is to solve the given problem.

Example

This section provides a simple example of the specified problem type.

Facts or forces to consider

Other than the given situation and the given type of problem, there may be various
PATTERNS FOR THE SCWCD EXAM 383

facts that need to be considered before using design patterns. These facts can vary

Licensed to Tricia Fu <tricia.fu@gmail.com>

largely from system to system, depending on the requirements. They are also referred
to as forces in design pattern jargon, because they influence whether or not a design
pattern is applicable in the given scenario. In some cases where more than one pattern
can solve the problem, these forces can be helpful in determining the choice of using
one pattern over the other. You can think of facts and forces as observations or require-
ments of the problem that you will take into consideration when you are evaluating
the candidate design patterns for this particular situation.

Solution

This section describes a typical solution that has been tried, tested, and proven by
experienced developers to solve the problem, taking into account the given facts or
forces. The problem-solution pair forms a design pattern. However, the solution is
really a high-level design guideline that we can follow. The actual implementation of
the solution may vary from context to context, and each implementation of the solu-
tion is referred to as a strategy of the solution in the J2EE jargon. Thus, each design
pattern can be implemented by applying different strategies depending on the context
of the problem and the facts or forces surrounding the problem.

We have not provided a separate section of strategies, and we have discussed only
the most common of the strategies for the patterns, since describing all the strategies
is outside the scope of this book.

Consequences/implications

This section describes the advantages, aftereffects, and hidden problems associated
with patterns. Every pattern has inherent side effects, and may solve one problem but
generate another. We need to weigh the pros and cons of the pattern and find a balance
between the two.

Category

This section indicates which of the three categories the pattern falls into: creational,
structural, or behavioral, with a brief description.

Points to remember

These are the points we must take into account when considering a particular pattern
as a solution. In the following discussions of the J2EE design patterns, we have pro-
vided a list of words, phrases, and terms that are related to the pattern, and which
may help you to prepare for the exam. When you read a problem statement, see if
you can identify any of the terms or phrases listed in this section in the statement.
Another tactic is to restate the problem (without changing the meaning) and find any
of these terms that match. This will aid you in selecting or eliminating the options in
exam questions.
384 CHAPTER 18 DESIGN PATTERNS

Licensed to Tricia Fu <tricia.fu@gmail.com>

18.2.2 The Intercepting Filter

Context

Client requests may have many different processing needs, and the system must be able
to meet them:

• The system receives requests using multiple protocols, such as HTTP, FTP,
or SMTP.

• The system must authorize or authenticate some requests, while handling oth-
ers directly.

• The system needs to add or remove information from requests or responses
before further processing.

Problem

Requests and responses need to be pre- and post-processed in a simple, organized
manner. Further, this processing needs to be performed without affecting the opera-
tion of the rest of the system, and must use standard interfaces in order to be added
and replaced.

Example

If you have to build an enterprise system that doubles as a web portal and corporate
intranet, you need to ensure that different client requests are handled appropriately.
Not only must the system block requests for secure resources, it must also check for
trusted IP addresses. Further, it must ensure that responses and requested resources are
compressed/decompressed and encrypted/decrypted as needed.

Facts or forces to consider

In the context and the problem presented above, we observe that there are three char-
acteristics of the desired system, as follows:

1 Centralized, standardized pre- and post-processing of incoming requests and
outgoing responses.

2 Provide authentication, transformation, and conversion of resources as needed.

3 Perform function with minimal effect on external code processing

Solution

The solution is to separate request/response processing from the rest of the system by
creating filters. These objects, more fully described in chapter 7, provide a standard-
ized, replacable means of altering requests and responses as needed.
PATTERNS FOR THE SCWCD EXAM 385

Licensed to Tricia Fu <tricia.fu@gmail.com>

Consequences/implications

• The standard interfaces associated with intercepting filters allows you to stack
them for multiple processing tasks. Further, this modularity allows you to test
filter processing without the full system present.

• A centralized location for request/response processing is important, but must
not create a bottleneck. This may require distributed processing.

• The standard filter mechanisms allow you to dynamically insert or remove fil-
ters during application deployment.

Category

Because intercepting filters reduce coupling between request processing and the rest of
the application, they are considered part of the behavioral category. They function by
managing the information sent from the client to the application layer, and then con-
trol the response processing. By providing a single point-of-contact for transforming
requests and responses, they reduce the confusion associated with having many differ-
ent interfaces for different client/server relationships.

Points to remember

The Intercepting Filter design pattern consists of multiple javax.servlet.Filter
objects that process requests and responses in a modular fashion. These filters are
described in greater technical depth in chapter 7.

Pay special attention to the following words, phrases, or terms appearing in the
problem statement:

• Central object for processing requests and responses

• Resource management, particularly regarding security, compression, and encryption

• Standard interface allows layered processing

• Intercepting filters deal with request processing, not with the application’s
appearance or dispatching mechanisms

18.2.3 Model-View-Controller (MVC)

Context

In systems involving user interfaces, the following situation typically arises:

• The system has to accept data from the user, update the database, and return
the data to the user at a later point in time.

• There are several ways in which the data can be accepted from and presented to
the system users.

• Data fed to the system in one form should be retrievable in another form.
386 CHAPTER 18 DESIGN PATTERNS

Licensed to Tricia Fu <tricia.fu@gmail.com>

Problem

If the system deploys a single component that interacts with the user as well as main-
tains the database, then a requirement to support a new type of display or view will
necessitate the redesign of the component.

Example

Suppose a bank provides online stock trading facilities. When the user is logged into
the site, the web application allows the user to view the rates of the stocks over a period
of time in various ways, such as a bar graph, a line graph, or a plain table. Here, the
same data that represents the rates of the stocks is viewed in multiple ways, but is con-
trolled by a single entity, the web application.

Facts or forces to consider

In the context and the problem presented above, we observe the following facts:

• There are three tasks to be done:

1 Manage the user’s interaction with the system.

2 Manage the actual data.

3 Format the data in multiple ways and present it to the user.

• Thus, a single component that does all the tasks can be split into three indepen-
dent components.

• All three tasks can then be handled by different components.

Solution

The solution is to separate the data presentation from the data maintenance and have
a third component that coordinates the first two. These three components are called
the Model, the View, and the Controller, and they form the basis of the MVC pattern.
Figure 18.1 shows the relationship between the components of the MVC pattern.

Here are the responsibilities of the three MVC components:

• Model—The Model is responsible for keeping the data or the state of the appli-
cation. It also manages the storage and retrieval of the data from the data
source. It notifies all the Views that are viewing its data when the data changes.

• View—The View contains the presentation logic. It displays the data contained
in the Model to the users. It also allows the user to interact with the system and
notifies the Controller of the users’ actions.

• Controller—The Controller manages the whole show. It instantiates the Model
and the View and associates the View with the Model. Depending on the appli-
cation requirements, it may instantiate multiple Views and may associate them
with the same Model. It listens for the users’ actions and manipulates the Model
PATTERNS FOR THE SCWCD EXAM 387

as dictated by the business rules.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Consequences/implications

• Separating the data representation (Model) from the data presentation (View)
allows multiple Views for the same data. Changes can occur in both the Model
and View components independently of each other as long as their interfaces
remain the same. This increases maintainability and extensibility of the system.

• Separating the application behavior (Controller) from the data presentation
(View) allows the controller to create an appropriate View at runtime based on
the Model.

• Separating the application behavior (Controller) from the data representation
(Model) allows the users’ requests to be mapped from the Controller to specific
application-level functions in the Model.

Category

Although MVC involves communication between the Model, View, and Controller
components, it is not a behavioral pattern because it does not specify how the three
components should communicate. The MVC pattern only specifies that the structure
of a system of components be such that each individual component take up one of the
three roles—Model, View, or Controller—and provide functionality only for its own
role. As such, it is a structural pattern.

In the J2EE world, MVC is thought of more as an architecture rather than a design
pattern. Though it can be applied in any of the tiers, it is most suitably applied in the

Figure 18.1 The Model-View-Controller pattern
388 CHAPTER 18 DESIGN PATTERNS

presentation tier.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Points to remember

The Model-View-Controller design pattern, consisting of three subobjects—Model,
View, and Controller—is applicable in situations where the same data (Model) is to be
presented in different formats (Views), but is to be managed centrally by a single con-
trolling entity (Controller).

Pay special attention to the following words, phrases, or terms appearing in the
problem statement:

• Separation of data presentation and data representation

• Provide services to different clients: web client, WAP client, etc.

• Multiple views, such as HTML or WML

• Single controller

18.2.4 Front Controller

Context

Managing an application for an individual user requires a number of considerations:

• Controlling the application’s view and navigation

• Performing security processing to determine which resources and services are
available for the user

• Activating system services according to user selection

• Locating and accessing available resources according to user selection

Problem

In many cases, the functions listed above are performed in a decentralized manner.
Without a single point for view management, each different view mechanism will need
to access services and resources separately. This combines the system’s appearance and
business logic, and removes the benefits of modularity and reusability associated with
MVC design.

Example

In a web application that accepts credit card information, several steps must be
completed:

• Browse the catalog.

• Add items to the shopping cart.

• Confirm the checkout.

• Get the name and shipping address of the receiver.

• Get the name and billing address and the credit card information of the payer.
PATTERNS FOR THE SCWCD EXAM 389

Licensed to Tricia Fu <tricia.fu@gmail.com>

The different views associated with the store are decentralized. This means that they
each control their navigation functions, as well as perform the tasks needed to dispatch
the user’s request.

Facts or forces to consider

In the context and the problem presented above, we observe the following facts:

• Since the different pages associated with the application rely on common pro-
cessing tasks, such as database accessing, they will need duplicate code.

• The different navigation controls may result in a combination of content
and navigation.

• Each view must have a separate means of activating system services and locating
system resources.

Solution

We need a single object to manage view control, resource/service accessing, error
handling, and initial request processing. This object acts as a front door to the client
and is called a Front Controller, or Front Component. Among the various strategies
suggested by J2EE, the two simplest ones are using a servlet or a JSP as front objects.
All requests will be sent to the Front Controller and each request will have an action
as a parameter.

Consequences/implications

• The control of use cases is centralized. A change in the sequence of steps affects
only the Front Controller component.

• Many web applications save the state of the client-server interaction if the user
logs out in the middle of a process. When the user logs in at some other time,
the previously saved state is reloaded and the process resumes from the point
where it was left. In such cases, it is easier to maintain the state information
using the Front Controller component because only one component handles
the state management.

• Multiple Front Controller objects can be developed; each controller can con-
centrate on a different business use case.

• The reusability of worker components increases. Since the code that manages
navigation across web pages now resides only in the Front Controller, it need
not be repeated in worker components. Thus, multiple Front Controllers can
reuse worker components.

Category
390 CHAPTER 18 DESIGN PATTERNS

Since the Front Controller pattern is concerned with communication with other com-
ponents, it falls in the category of behavioral pattern.

Licensed to Tricia Fu <tricia.fu@gmail.com>

In the J2EE pattern catalog, the Front Controller pattern is kept under the presen-
tation tier because it directly deals with the client’s requests and dispatches them to
the appropriate handler or worker components.

Points to remember

A Front Controller, or Front Component, is a component that provides a common
point of entry for all client requests. In this way, the controller unifies and streamlines
authentication and authorization, and dispatches the work to appropriate worker
components, thereby facilitating use case management.

Pay special attention to the following words, phrases, or terms appearing in the
problem statement:

• Dispatch requests

• Manage workflow of a web application

• Manage the sequence of steps

• Manage use cases

Many times, developers confuse the two design patterns—Intercepting Filter and
Front Controller. Remember that while an Intercepting Filter performs pre-processing
of requests, the Front Controller actually begins the main process. Further, the Front
Controller is much more involved in controlling the application’s appearance and acti-
vating system services than the Intercepting Filter. As an analogy, if the Intercepting
Filter is the security guard outside a building, the Front Controller is the receptionist
inside who can direct you to where you need to go.

18.2.5 Service Locator

Context

Many systems depend on distributed processing and communication. In these cases, a
number of concerns must be kept in mind:

• The system needs to locate and access resources and services across networks.

• If the services or resources are unavailable, the system must create local
implementations.

• New requests to a directory service require more time and resources than cached
repetitions of previous requests.

Problem

If distributed objects access the same resources across a network, their operation
will cause added traffic and reduced communication efficiency. Also, each object will
need updating when the network changes, a process demanding a great deal of code
and time.
PATTERNS FOR THE SCWCD EXAM 391

Licensed to Tricia Fu <tricia.fu@gmail.com>

Example

A large company contains a number of worldwide branches and needs to maintain
communication throughout. Many different applications require access to similar
external resources, such as personnel databases and inventory listings. In this case, the
system uses Java Naming and Directory Interface (JNDI) to help components find one
another. But as each object accesses JNDI separately, its responsiveness slows.

Facts or forces to consider

In the context and the problem presented above, we observe the following facts:

• Using distributed objects with external resource connections means greater code
and communication traffic.

• Caching external requests becomes more efficient as more requests are made.

• Each distributed object needs to be reinformed whenever a resource changes its
position in the network.

Solution

The solution is to encapsulate the process of external communication into a Service
Locator. With this method, the Locator object manages all of the complexity related
to locating and interfacing resources across the network. Further, to reduce the
amount of time associated with making requests, they can provide request caching.
Finally, if external resources have vendor-specific interfaces, this object will manage the
communication complexity and make accessing the resource transparent to the user.

Consequences/implications

• When a resource across the network is altered in any way, only the Service Loca-
tor object needs to be updated.

• The Service Locator caching makes it very efficient for multiple objects to
access similar resources across a network.

• The Service Locator provides a single, uniform interface to external resources,
no matter what the resource’s actual API may be. This reduces the amount of
code needed for distributed communication, and makes it easier to test net-
work capability.

Category

Because Service Locator objects assist with network communication by reducing the
coupling between business logic and external resources, this pattern is classified into
the Behavioral category. By adding caching and removing sources of traffic, this object
can improve the performance of a distributed application and reduce the amount of
392 CHAPTER 18 DESIGN PATTERNS

code needed to build and maintain it.

Licensed to Tricia Fu <tricia.fu@gmail.com>

In the J2EE pattern catalog, the Service Locator pattern is kept under the business
tier because it doesn’t directly deal with clients, but instead manages the connectivity
of the underlying business logic.

Points to remember

The Service Locator pattern is very simple to understand and identify on the exam,
but you should pay special attention to the following words, phrases, or terms appear-
ing in the problem statement:

• Provides access to heterogeneous networks and services (JNDI, RMI, etc)

• A single point-of-contact for managing distributed connections and resources

• Distributed request caching

• Improves ease of business application development by encapsulating inter-
face complexity

18.2.6 Business Delegate

Context

In an enterprise-scaled distributed application, typically the following situation arises:

• There are separate components to interact with the end users and to handle
business logic.

• These separate components reside in different subsystems, separated by a network.

• The components that handle the business logic act as server components
because they provide business services to the clients by exposing the business
service API to the clients.

• The client components that use this API often reside in a remote system sepa-
rated by a network.

• There is more than one client using the API.

• There is more than one server component providing similar services, but with
minor differences in the API.

Problem

Business services implemented by the business-tier components are accessed directly
by the presentation-tier components through the exposed API of the services. How-
ever, the interfaces of such services keep changing as the requirements evolve. This
affects all the components on the presentation tier. Furthermore, all the client-side
components have to be aware of the location details of the business services—that
is, each component has to use the JNDI lookup service to locate the required
remote interfaces.
PATTERNS FOR THE SCWCD EXAM 393

Licensed to Tricia Fu <tricia.fu@gmail.com>

Example

In the case of the J2EE architecture, the server components that expose the busi-
ness service API are the session beans, the API is the remote interface implemented
by the session beans, and the client components that use these services are servlets
and the JavaBeans used in JSP pages. Figure 18.2 shows this relationship.

Let’s look at a real-world example. A company is building a web-based application
with JSP pages and servlets that need to access a set of business services. The management
has decided not to develop the business services in-house, since they are readily available
as off-the-shelf software from various vendors. In addition, the budget for the project
is currently tight, so management has decided that they will purchase one of the more
economical off-the-shelf solutions initially, and then when the money becomes avail-
able in a year, they will replace it with a more elaborate and expensive software solution.

Fact or forces to consider

• The presentation-tier components, which in this case are the web compo-
nents—servlets, JSP pages, and JavaBeans—perform two main tasks:

• Handling the end user, which involves managing the web application logic, pre-
senting the data, and so forth

• Accessing the business services
• The code that handles the end user should not be dependent on the code that

accesses the business services.
• Multiple presentation-tier components can call the same set of remote methods

in the same sequence.

Figure 18.2 Relationship of J2EE components in multiple tiers
394 CHAPTER 18 DESIGN PATTERNS

• It is expected that the business service APIs will change as business require-
ments evolve.

Licensed to Tricia Fu <tricia.fu@gmail.com>

Solution

Create a Business Delegate to handle all of the code that accesses the business services
in the selected vendor software. When the vendor changes, the only changes that need
to be made to the company’s application software are changes to the Business Delegate,
to access the business services in the new vendor software. The JSP pages and servlets
will not have to be modified.

As shown in figure 18.3, we need to separate the code that accesses the remote ser-
vice from the code that handles the presentation. We can put this service access code
in a separate object. This separate object is called a Business Delegate object.

The Business Delegate object abstracts the business services API and provides a
standard interface to all the client components. It hides the underlying implementa-
tion details, such as the lookup mechanism and the API of the business services. This
reduces the coupling between the clients and the business services.

The responsibilities of the components participating in this pattern are

• Client components—The client components, which are JSP pages and servlets in
the presentation tier, delegate the work of locating the business service providers
and the work of invoking the business service API methods to the Business
Delegate objects.

• Business Delegate—The Business Delegate acts as a representative of the client
components. It knows how to look up and access the business services. It
invokes the appropriate business services methods in the required order. If the
API of the business service component changes, only the Business Delegate
needs to be modified, without affecting the client components.

• Business service—A business service component implements the actual business
logic. Some examples of business service components are a stateless session EJB,
an entity EJB, a CORBA object, or an RPC server.

Figure 18.3 The Business Delegate pattern
PATTERNS FOR THE SCWCD EXAM 395

Licensed to Tricia Fu <tricia.fu@gmail.com>

Consequences/implications

• Repetition of code is avoided. Each component does not have to include the
code that will perform the lookup operation on the remote interfaces and
invoke the methods.

• The server business logic API is hidden from the client components. Thus, it
reduces the number of changes required in the client components when there is
a change in the API of the server components.

• The Business Delegate can do all the business service–specific tasks, such as
catching exceptions raised by the business services. For instance, it can catch
remote exceptions and wrap them into application exceptions that are more
user friendly.

• The results of remote invocations may be cached. This significantly improves
performance, because it eliminates repetitive and potentially costly remote calls.
The cached results may be used by multiple client components, again reducing
code repetition and increasing performance.

It is worth mentioning here that the Business Delegate can either locate the business
services itself or use another pattern, called the Service Locator pattern, to help locate
the business service. In the instances when it uses the Service Locator pattern, the Busi-
ness Delegate will deal only with the business service API invocation regardless of
where the services are located, while the Service Locator does the job of locating the
required named services. It is important to know that multiple Business Delegate
objects can share a common Service Locator.

Category

Since the Business Delegate pattern is concerned with the communication between two
components—the presentation-tier and business-tier components—it falls into the
category of a behavioral pattern. It describes how we can reduce the coupling between
the two communicating parties by introducing the delegation layer in between, and
how we can increase the flexibility of the design.

In the J2EE pattern catalog, the Business Delegate pattern is kept under the busi-
ness tier category since it is more closely related to the business-tier components. How-
ever, note that the objects that implement the Business Delegate pattern reside in the
presentation tier.

Points to remember

A Business Delegate is an object that resides on the client side and communicates with
the business service components residing on the server side. The client-side compo-
nents can delegate the work of accessing the business services exposed by the business
service components to the Business Delegate.

Pay special attention to the following words, phrases, or terms appearing in the
396 CHAPTER 18 DESIGN PATTERNS

problem statement:

Licensed to Tricia Fu <tricia.fu@gmail.com>

• Reduce coupling between presentation and business tiers

• Proxy for the client

• Client-side facade

• Cache business service references for presentation-tier components

• Cache business service results for presentation-tier components

• Encapsulate business service lookup

• Encapsulate business service access

• Decouple clients from business service API

18.2.7 Transfer Object

Context

In distributed applications, the following situation typically arises:

• The client-side and the server-side components reside at remote locations and
communicate over the network.

• The server handles the database.

• The server provides getter methods to the clients so that the clients can call
those getter methods one by one to retrieve database values.

• The server provides setter methods to the clients so that the clients can call
those setter methods one by one to update database values.

Problem

Every call between the client and the server is a remote method call with substantial
network overhead. If the client application calls the individual getter and setter meth-
ods that retrieve or update single attribute values, it will require as many remote calls
as there are attributes. These individual calls generate a lot of network traffic and
degrade the system performance.

Example

In the J2EE architecture, the business tier accesses the database directly or via the
resource tier, and wraps the data access mechanism inside a set of entity beans and ses-
sion beans. These entity and session beans expose the data via remote interfaces. The
servlets and JSP pages in the presentation tier that need to access business data can do
so by calling methods on the remote interfaces implemented by the beans.

As a specific example, suppose we maintain the address information in the data-
base of the registered users of our enterprise application. In this case, the address
information, which is a summation of four other pieces of data—street, city, state, and,
zip—is a business entity. The access to this information is encapsulated by the applica-
PATTERNS FOR THE SCWCD EXAM 397

tion’s business tier with the help of a session bean called AddressSessionBean.

Licensed to Tricia Fu <tricia.fu@gmail.com>

AddressSessionBean exposes methods for the remote clients, such as get-
State(), setState(), getCity(), and setCity(). The servlets and the JSP
pages then have to call each of the methods one by one on the remote server, as
shown in figure 18.4.

Facts or forces to consider

In the context and the problem presented above, we observe the following facts:

• A single business object has many attributes.

• Most of the time, the client requires values for more than one attribute simulta-
neously rather than just an individual attribute.

• The rate of retrieving the data (calling the getter methods) is higher than the
rate of updating the data (calling the setter methods).

For example, the address consists of the street, state, city, and zip. Each time the user
buys a product online, we want to show the full address information for billing pur-
poses. On the other hand, it is unlikely that the user’s address changes very often.

Solution

Create an object to encapsulate all of the attribute values that are required by the client
application. This object is called the Transfer Object. When the client requests the
data from the server, the server-side component gathers the data values and constructs

Figure 18.4 Accessing attributes remotely
398 CHAPTER 18 DESIGN PATTERNS

the Transfer Object by setting its data values. This object is then sent to the client by

Licensed to Tricia Fu <tricia.fu@gmail.com>

value (not by reference), which means that the whole object is serialized and each of
its bits is transferred over the network.

The client on the other side reconstructs this object locally with all the values
intact. It can then query this local instance for all the attribute values. Because the
Transfer Object is local on the client, all of the calls to this object are local and do not
incur any network overhead. The Transfer Object on the client serves as a proxy for
the properties of the remote object. This scenario is shown in figure 18.5.

Now, instead of making multiple remote calls on the business object, Address-
Bean, to retrieve all the attributes, the client calls a single method, getAddress(),
which returns all the attributes structured in an AddressVO object.

Consequences/implications

• The remote interfaces are simpler because the multiple methods returning
single values are collapsed into one single method returning a group of multi-
ple values.

• Because of the reduced number of calls across the network, the user response
time improves.

• If the client wants to update the attribute values, it first updates the values
in the local Transfer Object and then sends the updated Transfer Object to
the server to persist the new values. This also happens using the pass-by-

Figure 18.5 Accessing attributes using the Value Object design pattern
PATTERNS FOR THE SCWCD EXAM 399

value mechanism.

Licensed to Tricia Fu <tricia.fu@gmail.com>

• The Transfer Object can become stale—that is, if the client has acquired a
Transfer Object for a long time, there is a possibility that the information may
have been updated by another client.

• In the case of a mutable Transfer Object, requests for update from two or more
clients can result in data conflict.

Category

Since the Transfer Object pattern is concerned with communication between two
other components, it falls in the category of a behavioral pattern.

In the J2EE pattern catalog, the Transfer Object is kept under the business tier
because it represents the business object on the client side. However, note that even
though the object that implements the Transfer Object pattern is created in the busi-
ness tier, it is transferred to the presentation tier and is actually used in the presenta-
tion tier.

Points to remember

A Transfer Object is a small-sized serializable Java object that is used for carrying
grouped data (values) over the network from one component residing in one tier to
another component residing in another tier of a multitier distributed application. Its
purpose is to reduce communication overhead by reducing the number of remote calls
between the distributed components.

Pay special attention to the following words, phrases, or terms appearing in the
problem statement:

• Small object

• Grouped information

• Read-only data

• Reduce network traffic

• Improve response time

• Transfer data across networked tiers

18.3 SUMMARY

Design patterns induce abstraction, division of labor, and reusability in software sys-
tems. Consistent use of design patterns results in scalable and maintainable systems.
We briefly looked at design patterns of the J2EE architecture, classified into three tiers:
presentation, business, and integration. Then we examined in depth the six design pat-
terns that are specified by the exam objectives: Intercepting Filter, Model-View-
Controller, Front Controller, Service Locator, Business Delegate, and Transfer Object.

If you are interested in learning more about design patterns, various books and arti-
400 CHAPTER 18 DESIGN PATTERNS

cles on patterns related to all kinds of domains are available. There are books on design

Licensed to Tricia Fu <tricia.fu@gmail.com>

patterns in compiler writing, design patterns on parallel computing, design patterns
specifically for the Java programming language, and so forth. During your explora-
tions, you may soon find yourself lost in a jungle of patterns, as you discover that some
of them do the same thing but have different names, and that many of them provide
similar solutions but different implementations.

If you are planning to study for the Sun Certified Enterprise Architect (SCEA)
exam in addition to becoming a Sun Certified Web Component Developer
(SCWCD), then we suggest you become familiar with all the J2EE patterns and the var-
ious specifications that are part of the J2EE family of architectures.

As for the SCWCD, with the end of this chapter, you are now ready to answer the
questions based on the important design patterns: Intercepting Filter, Model-View-
Controller, Front Controller, Service Locator, Business Delegate, and Transfer Object.

18.4 REVIEW QUESTIONS

1. What are the benefits of using the Transfer Object pattern? (Select two)

a The type of the actual data source can be specified at deployment time.
b The data clients are independent of the data source vendor API.
c It increases the performance of data-accessing routines.
d It allows the clients to access the data source through EJBs.
e It allows resource locking in an efficient way.

2. Which design pattern allows you to decouple the business logic, data representa-
tion, and data presentation? (Select one)

a Model-View-Controller
b Transfer Object
c Bimodal Data Access
d Business Delegate

3. Which of the following are the benefits of using the Transfer Object design pat-
tern? (Select two)

a It improves the response time for data access.
b It improves the efficiency of object operations.
c It reduces the network traffic.
d It reduces the coupling between the data access module and the database.

4. Which of the following statements are correct? (Select two)

a The Transfer Object pattern ensures that the data is not stale at the time of use.
b It is wise to make the Transfer Object immutable if the Transfer Object repre-

sents read-only data.
c Applying the Transfer Object pattern on EJBs helps to reduce the load on
REVIEW QUESTIONS 401

enterprise beans.
d A Transfer Object exists only on the server side.

Licensed to Tricia Fu <tricia.fu@gmail.com>

5. What are the benefits of using the Business Delegate pattern? (Select three)

a It implements the business service functionality locally to improve perfor-
mance.

b It shields the clients from the details of the access mechanism, such as
CORBA or RMI, of the business services.

c It shields the clients from changes in the implementation of the business
services.

d It provides the clients with a uniform interface to the business services.
e It reduces the number of remote calls and reduces network overhead.

6. You are designing an application that is required to display the data to users
through HTML interfaces. It also has to feed the same data to other systems
through XML as well as WAP interfaces. Which design pattern would be appro-
priate in this situation? (Select one)

a Interface Factory
b Session Facade
c Transfer Object
d Model-View-Controller
e Factory

7. You are automating a computer parts ordering business. For this purpose, your
web application requires a controller component that would receive the requests
and dispatch them to appropriate JSP pages. It would also coordinate the request
processing among the JSP pages, thereby managing the workflow. Finally, the
behavior of the controller component is to be loaded at runtime as needed.
Which design pattern would be appropriate in this situation? (Select one)

a Front Controller
b Session Facade
c Transfer Object
d Model-View-Controller
e Data Access Object

8. You are building the server side of an application and you are finalizing the
interfaces that you will provide to the presentation layer. However, you have not
yet finalized the access details of the business services. Which design pattern
should you use to mitigate this concern? (Select one)

a Model-View-Controller
b Data Access Object
c Business Delegate
d Facade
402 CHAPTER 18 DESIGN PATTERNS

e Transfer Object

Licensed to Tricia Fu <tricia.fu@gmail.com>

A P P E N D I X A

Installing Tomcat 5.0.25
You’ll need to install Tomcat to test the sample code that we have developed in the
chapters. This appendix will help you install Tomcat.

A.1 PREREQUISITES

You should have JDK 1.4 or higher installed and working on your machine.

A.2 GETTING TOMCAT

You can download the latest version of Tomcat from http://jakarta.apache.org/tomcat.
The version currently available is Tomcat 5.0.25.

A.3 INSTALLATION

Installing Tomcat is a straightforward process. The following sections will help you
install and set up Tomcat on Windows 98/NT/2000.
403

Licensed to Tricia Fu <tricia.fu@gmail.com>

A.3.1 Extracting files

Double-click on jakarta-tomcat-5.0.25.exe to start installing the files. An
installation dialog box will appear, asking for configuration information. During the
installation procedure, we recommend that you make two changes to the defaults:

• Change the destination folder to C:\jakarta-tomcat-5.0.25. This direc-
tory will be referred to as CATALINA_HOME.

• Change the HTTP Connector/1.1 Port from 8080 to 80 (unless you’re already
running a web server).

The first change makes it simpler to find and remember the location of
CATALINA_HOME. The second makes it possible to invoke servlets and JSPs without
setting the port number.

A.3.2 Setting environment variables

To run Tomcat, you need to set two environment variables: CATALINA_HOME and
JAVA_HOME. CATALINA_HOME refers to the Tomcat installation directory, and
JAVA_HOME refers to the JDK 1.4 installation directory.

To be able to compile your servlets, you need to add the proper API classes to your
CLASSPATH environment variable. These classes are contained within two files: c:\
jakarta-tomcat-5.0.25\common\lib\servlet-api.jar and c:\jakarta-
tomcat-5.0.25\common\lib\jsp-api.jar.

On Windows 98, open c:\autoexec.bat and add the following:

SET CATALINA_HOME=c:\jakarta-tomcat-5.0.25
SET JAVA_HOME=c:\jdk1.4.2
SET CLASSPATH=%CLASSPATH%;.;c:\jakarta-tomcat-5.0.25\common\lib\servlet-
api.jar;c:\jakarta-tomcat-5.0.25\common\lib\jsp-api.jar

Be sure to substitute the appropriate directory for c:\jdk1.4.2. You’ll need to
restart your machine.

In Windows 2000/NT, go to Start|Settings|Control Panel|System. Then select the
Advanced tab and in the Environment Variables section, set the above two variables
as either System variables or User variables. You do not need to restart your machine,
but you will need to close all the DOS windows and open a new DOS window to see
the newly set variables.

A.4 DIRECTORY STRUCTURE

After you’ve installed Tomcat, your jakarta-tomcat-5.0.25 directory should
look like the one shown in figure A.1.

There are three important directories under the jakarta-tomcat-5.0.25
directory. Let’s take a look at each.
404 APPENDIX A INSTALLING TOMCAT 5.0.25

Licensed to Tricia Fu <tricia.fu@gmail.com>

The bin directory

This directory contains the executable batch files, such as startup.bat and shut-
down.bat.

The conf directory

This directory contains several configuration files, such as server.xml and web.xml.

The webapps directory

Tomcat keeps all the web applications in this directory. Each directory that you see
under the c:\jakarta-tomcat-5.0.25\webapps directory corresponds to a
web application. The directory named ROOT refers to the default web application.

A.5 RUNNING TOMCAT

Although you can control Tomcat with DOS commands, it’s much easier to use desk-
top shortcuts. If you look in the c:\jakarta-tomcat-5.0.25\bin directory,
you’ll see a number of batch (with the extension .bat) files. The two we’re interested
in are startup.bat and shutdown.bat, which function as their names imply.

We recommend that you create a shortcut for each by right-clicking, choosing the
Create Shortcut option, and moving the two shortcuts to your desktop. From there,
you can start Tomcat by double-clicking on startup.bat, and end its execution by

Figure A.1

The Tomcat

directory

structure
RUNNING TOMCAT 405

double-clicking on shutdown.bat.

Licensed to Tricia Fu <tricia.fu@gmail.com>

To check whether Tomcat is running, go to http://localhost from your
browser. You’ll see the default page saying your installation is successful. Here, the
name localhost means that you are connecting to your own machine (since Tom-
cat is running on the same machine). You can also use 127.0.0.1 instead of local-
host—that is, http://127.0.0.1.

In some cases, Windows 98 may complain about low memory. If this happens,
right-click on a DOS window’s top border and choose Properties|Memory. Set the
default memory from Auto to 8192. Alternatively, you can add the following line in
autoexec.bat:

 SHELL=C:/windows/command.com /E:8192 /P

If you work in an office environment where you use a proxy server to browse the Web,
you should set the browser so that it bypasses the proxy for the local addresses. To do
this for Microsoft Internet Explorer, choose Tools|Internet Options|Connections|LAN
Settings. Then, select the Bypass Proxy For Local Addresses checkbox.

A.6 CREATING A NEW WEB APPLICATION

Each directory in the webapps directory of the Tomcat installation represents a web
application. So for instance, if you want to create a new web application with the name
helloapp, you create a directory by that name in the webapps directory. You can
put static files directly into this directory and then view them from the browser. Be
sure to add a WEB-INF directory also.

For example, if you put in a file named myhomepage.html, you can view it
through the following URL:

 http://localhost/helloapp/myhomepage.html

However, before you add servlets and JSP pages, you should read the discussion about
the directory structure of a web application in chapter 5, “Structure and deployment.”

A.7 SECURITY

By default, Tomcat runs in a nonsecure mode. This means that a web application class
can access anything on the system. For example, a malicious servlet class or a JSP page
can delete files from your system.

You can prevent this by accessing Tomcat from the DOS prompt and starting it
in secure mode:

 C:\jakarta-tomcat-5.0.25\bin>startup -security

The –security option forces Tomcat to use a security manager. This security man-
ager uses the policies specified in the conf/catalina.policy file. You can cus-
tomize this policy file by granting rights to specific web applications as per the
406 APPENDIX A INSTALLING TOMCAT 5.0.25

application requirements. If an application tries to access anything for which it does

Licensed to Tricia Fu <tricia.fu@gmail.com>

not have the appropriate rights, it will be denied access and the server will throw a
java.security.AccessControlException.

Security is especially important when you want to run a readymade third-party web
application under your Tomcat installation; running Tomcat in the secure mode will
protect your system. Also, service providers often use a shared Tomcat instance for
hosting multiple web applications, in which case running it in the secure mode
becomes a necessity.
SECURITY 407

Licensed to Tricia Fu <tricia.fu@gmail.com>

A P P E N D I X B

A sample web.xml file
The following listing of a sample web.xml file illustrates the use of various elements
of a deployment descriptor. We have explained the elements that you are required to
know for the exam throughout the book. This code listing is just for a quick recap.

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 "http://java.sun.com/xml/ns/j2ee web-app_2_4.xsd"

 version="2.4">
 <display-name>Test Webapp</display-name>

 <description>This is a sample deployment descriptor that shows
 the use of important elements.
 </description>

 <!-- Presence of this element indicates that this
 WebApp is distributable. -->
 <distributable/>

 <!-- Defines WebApp initialization parameters.-->
 <context-param>
 <param-name>locale</param-name>
 <param-value>US</param-value>
408

 </context-param>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <context-param>
 <param-name>DBName</param-name>
 <param-value>Oracle</param-value>
 </context-param>

 <!-- Defines filters and specifies filter mapping -->
 <filter>
 <filter-name>Test Filter</filter-name>
 <description>Just for test</description>

 <filter-class>filters.TestFilter</filter-class>
 <init-param>
 <param-name>locale</param-name>
 <param-value>US</param-value>
 </init-param>
 </filter>

 <filter-mapping>
 <filter-name>Test Filter</filter-name>
 <servlet-name>TestServlet</servlet-name>
 </filter-mapping>

 <!-- Defines application events listeners -->
 <listener>
 <listener-class>listeners.MyServletContextListener
 </listener-class>
 </listener>
 <listener>
 <listener-class>listeners.MySessionCumContextListener
 </listener-class>
 </listener>

 <!-- Defines servlets -->
 <servlet>
 <servlet-name>TestServlet</servlet-name>
 <description>Just for test</description>
 <servlet-class>servlets.TestServlet</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>HelloServlet</servlet-name>
 <servlet-class>servlets.HelloServlet</servlet-class>
 <init-param>
 <param-name>locale</param-name>
 <param-value>US</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 <security-role-ref>
 <!-- role-name is used in
 HttpServletRequest.isUserInRole(String role)
 method. -->
 <role-name>manager</role-name>
 <!-- role-link is one of the role-names specified in
 security-role elements. -->
A SAMPLE WEB.XML FILE 409

 <role-link>supervisor</role-link>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <security-role-ref>
 </servlet>

 <!-- Defines servlet mappings -->
 <servlet-mapping>
 <servlet-name>TestServlet</servlet-name>
 <url-pattern>/test/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>

 <servlet-name>HelloServlet</servlet-name>
 <url-pattern>*.hello</url-pattern>
 </servlet-mapping>

 <session-config>
 <!--specifies session timeout as 30 minutes. -->
 <session-timeout>30</session-timeout>
 <session-config>

 <mime-mapping>
 <extension>jar</extension>
 <mime-type>application/java-archive</mime-type>
 </mime-mapping>
 <mime-mapping>
 <extension>conf</extension>
 <mime-type>text/plain</mime-type>
 </mime-mapping>

 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 <welcome-file>home.html</welcome-file>
 <welcome-file>welcome.html</welcome-file>
 </welcome-file-list>

 <error-page>
 <error-code>404</error-code>
 <location>notfoundpage.jsp</location>
 </error-page>
 <error-page>
 <exception-type>java.sql.SQLException</exception-type>
 <location>sqlexception.jsp</location>
 </error-page>

 <taglib>
 <taglib-uri>http://abc.com/testlib</taglib-uri>
 <taglib-location>
 /WEB-INF/tlds/testlib.tld
 </taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/examplelib</taglib-uri>
 <taglib-location>
 /WEB-INF/tlds/examplelib.tld
 </taglib-location>
410 APPENDIX B A SAMPLE WEB.XML FILE

 </taglib>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <security-constraint>
 <display-name>Example Security Constraint</display-name>
 <web-resource-collection>
 <web-resource-name>Protected Area</web-resource-name>
 <url-pattern>/test/*</url-pattern>
 <!-- only POST method is protected -->
 <http-method>POST</http-method>
 </web-resource-collection>

 <web-resource-collection>
 <web-resource-name>Another Protected Area</web-resource-name>
 <url-pattern>*.hello</url-pattern>
 <!-- All methods are protected as no http-method is
 specified -->
 </web-resource-collection>

 <auth-constraint>
 <!-- Only the following roles can access the above resources.
 The role must be defined in security-role. -->
 <role-name>supervisor</role-name>
 </auth-constraint>

 <user-data-constraint>
 <!-- Specifies the type of communication
 between the client and the server.
 It can be: NONE, INTEGRAL, or CONFIDENTIAL -->
 <transport-guarantee>INTEGRAL</transport-guarantee>
 </user-data-constraint>

 </security-constraint>

 <login-config>
 <!-- auth-method can be: BASIC, FORM, DIGEST, or CLIENT-CERT -->
 <auth-method>FORM</auth-method>
 <realm-name>sales</realm-name>
 <form-login-config>
 <form-login-page>/formlogin.html</form-login-page>
 <form-error-page>/formerror.jsp</form-error-page>
 </form-login-config>
 </login-config>

 <!-- Specifies the roles that are defined in the application
 server. For example, Tomcat defines it in
 conf\tomcat-users.xml -->
 <security-role>
 <role-name>supervisor</role-name>
 </security-role>
 <security-role>
 <role-name>worker</role-name>
 </security-role>

</web-app>
A SAMPLE WEB.XML FILE 411

Licensed to Tricia Fu <tricia.fu@gmail.com>

A P P E N D I X C
Review Q & A

CHAPTER 4—THE SERVLET MODEL

1. Which method in the HttpServlet class services the HTTP POST request?
(Select one)
a doPost(ServletRequest, ServletResponse)

b doPOST(ServletRequest, ServletResponse)

c servicePost(HttpServletRequest, HttpServletResponse)

d doPost(HttpServletRequest, HttpServletResponse)

Answer: d

Explanation

Remember that HttpServlet extends GenericServlet and provides HTTP-
specific functionality. Thus, all its methods take HttpServletRequest and
HttpServletResponse objects as parameters.

Also, the method names follow the standard Java naming convention—for exam-
ple, the method for processing POST requests is doPost() and not doPOST().

2. Consider the following HTML page code:

 <html><body>
 POST
 </body></html>

Which method of HelloServlet will be invoked when the hyperlink displayed
by the above page is clicked? (Select one)

a doGet

b doPost
412

c doForm

Licensed to Tricia Fu <tricia.fu@gmail.com>

d doHref

e serviceGet

Answer: a

Explanation

Don’t get confused by the text POST displayed by the hyperlink. A click on a
hyperlink always generates an HTTP GET request, which is handled by the
doGet() method. You can generate a POST request through a hyperlink by using
JavaScript. For example:

 <html>
 <script lanaguage="JavaScript">
 function sendPost()
 {
 dummyform.submit();
 }
 </script>
 <body>
 <form name="dummyform" action=
 "/servlet/HelloServlet" method="POST">
 <input type="text" name="name">
 </form>
 POST
 </body>
 </html>

This HTML code executes the JavaScript function sendPost() whenever the
hyperlink is clicked. This function submits the dummyform, causing a POST
request to be sent.

3. Consider the following code for the doGet() method:

 public void doGet(HttpServletRequest req,
 HttpServletResponse res)
 {
 PrintWriter out = res.getWriter);
 out.println("<html><body>Hello</body></html>");

 //1

 if(req.getParameter("name") == null)
 {
 res.sendError(HttpServletResponse.SC_UNAUTHORIZED);
 }
 }

Which of the following lines can be inserted at //1 so that the above code does
not throw any exception? (Select one)
a if (! res.isSent())

b if (! res.isCommitted())
REVIEW Q & A 413

c if (! res.isDone())

Licensed to Tricia Fu <tricia.fu@gmail.com>

d if (! res.isFlushed())

e if (! res.flush())

Answer: b

Explanation

This question is based on the concept that the HttpServletResponse.send-
Error() method throws an IllegalStateException if the response has
already been sent to the client. The ServletRequest.isCommitted() method
checks whether or not the response is committed.

4. Which of the following lines would initialize the out variable for sending a
Microsoft Word file to the browser? (Select one)
a PrintWriter out = response.getServletOutput();

b PrintWriter out = response.getPrintWriter();

c OutputStream out = response.getWriter();

d PrintWriter out = response.getOuputStream();

e OutputStream out = response.getOuputStream();

f ServletOutputStream out = response.getServletOutputStream();

Answer: e

Explanation

For sending any data other than text, you need to get the OutputStream object.
ServletResponse.getOutputStream() returns an object of type Servlet-
OutputStream, where ServletOutputStream extends OutputStream.

5. You need to send a GIF file to the browser. Which of the following lines should be
called after (or before) a call to response.getOutputStream()? (Select one)
a response.setContentType("image/gif"); Before

b response.setContentType("image/gif"); After

c response.setDataType("image/gif"); Before

d response.setDataType("image/gif"); After

e response.setStreamType("image/gif"); Before

f response.setStreamType("image/gif"); After

Answer: a

Explanation

You need to set the content type of the response using the ServletResponse.
setContentType() method before calling the ServletResponse.getOutput-
Stream() method.

6. Consider the following HTML page code:

 <html><body>
 <form name="data" action="/servlet/DataServlet" method="POST">
 <input type="text" name="name">
 <input type="submit" name="submit">
414 APPENDIX C REVIEW Q & A

 </form>
 </body></html>

Licensed to Tricia Fu <tricia.fu@gmail.com>

Identify the two methods that can be used to retrieve the value of the name
parameter when the form is submitted.
a getParameter("name");

b getParameterValue("name");

c getParameterValues("name");

d getParameters("name");

e getValue("name");

f getName();

Answers: a and c

Explanation

ServletRequest provides two methods to retrieve input parameters:

• getParameter("name"): Returns a String or null.
• getParameterValues("name"): Returns a String array containing all the

values for the name parameter or null.

Besides these two, ServletRequest also provides a getParameterNames()
method that returns an Enumeration object of all the parameter names present in
the request, or an empty Enumeration if the request does not contain any parameter.

7. Which of the following methods would you use to retrieve header values from a
request? (Select two)
a getHeader() of ServletRequest
b getHeaderValue() of ServletRequest
c getHeader() of HttpServletRequest
d getHeaders() of ServletRequest
e getHeaders() of HttpServletRequest

Answers: b and e

Explanation

Headers are a feature of the HTTP protocol. Thus, all the header-specific methods
belong to HttpServletRequest. getHeader() returns a String (or null),
while getHeaders() returns an Enumeration of all the values for that header
(or an empty Enumeration).

8. Consider the following code:

 public void doGet(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException
 {

 if(req.getParameter("switch") == null)
 {
 //1
 }
REVIEW Q & A 415

 else
 {

Licensed to Tricia Fu <tricia.fu@gmail.com>

 //other code
 }
 }

Which of the following lines can be inserted at //1 so that the request is redi-
rected to the collectinfo.html page? (Select one)
a req.sendRedirect("collectinfo.html");

b req.redirect("collectinfo.html");

c res.direct("collectinfo.html");

d res.sendRedirect("collectinfo.html");

e this.sendRedirect("collectinfo.html");

f this.send("collectinfo.html");

Answer: d

Explanation

You can redirect the client to another resource using the HttpServletResponse.
sendRedirect() method.

9. Consider the following code:

 public void doGet(HttpServletRequest req,
 HttpServletResponse res)
 {
 HttpSession session = req.getSession();
 ServletContext ctx = this.getServletContext();

 if(req.getParameter("userid") != null)
 {
 String userid = req.getParameter("userid");
 //1
 }
 }

You want the userid parameter to be available only to the requests that come
from the same user. Which of the following lines would you insert at //1?
(Select one)
a session.setAttribute("userid", userid);

b req.setAttribute("userid", userid);

c ctx.addAttribute("userid", userid);

d session.addAttribute("userid", userid);

e this.addParameter("userid", userid);

f this.setAttribute("userid", userid);

Answer: a

Explanation

Attributes stored in the session scope are available only for the requests from the
same client. Attributes stored in the context scope are available for all the requests
to the same web application from all the clients. Attributes stored in the request
416 APPENDIX C REVIEW Q & A

scope are available only for the request in which it is stored.

Licensed to Tricia Fu <tricia.fu@gmail.com>

10. Which of the following lines would you use to include the output of Data-
Servlet into any other servlet? (Select one)
a RequestDispatcher rd = request.getRequestDispatcher(

 "/servlet/DataServlet"); rd.include(request, response);

b RequestDispatcher rd = request.getRequestDispatcher(
 "/servlet/DataServlet"); rd.include(response);

c RequestDispatcher rd = request.getRequestDispatcher();
 rd.include("/servlet/DataServlet", request, response);

d RequestDispatcher rd = request.getRequestDispatcher();
 rd.include("/servlet/DataServlet", response);

e RequestDispatcher rd = request.getRequestDispatcher();
 rd.include("/servlet/DataServlet");

Answer: a

Explanation

To forward or include a request to another resource, first you need to get a
RequestDispatcher object from either ServletRequest or ServletContext.
Then you can call include() or forward() and pass the current request and
response objects as parameters.

CHAPTER 5—STRUCTURE AND DEPLOYMENT

1. Which element is used to specify useful information about an initialization
parameter of a servlet in the deployment descriptor? (Select one)
a param-description

b description

c info

d param-info

e init-param-info

Answer: b

Explanation

Remember that the description element is used for all the elements that can
take a description (useful information about that element). This includes servlet,
init-param, and context-param, among others. For a complete list of the ele-
ments that can take a description, please read the DTD for web.xml.

2. Which of the following deployment descriptor snippets correctly associates a serv-
let implemented by a class named com.abc.SalesServlet with the name
SalesServlet? (Select one)
a <servlet>

 <servlet-name>com.abc.SalesServlet</servlet-name>
 <servlet-class>SalesServlet</servlet-class>
 </servlet>

b <servlet>
REVIEW Q & A 417

 <servlet-name>SalesServlet</servlet-name>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <servlet-package>com.abc.SalesServlet</servlet-package>
 </servlet>

c <servlet>
 <servlet-name>SalesServlet</servlet-name>
 <servlet-class>com.abc.SalesServlet</servlet-class>
 </servlet>

d <servlet name="SalesServlet" class="com.abc.SalesServlet">

 <servlet>
 <servlet-class name="SalesServlet">
 com.abc.SalesServlet
 </servlet-class>
 </servlet>

e <servlet>
 <servlet-name class="com.abc.SalesServlet">
 SalesServlet
 </servlet-name>
 </servlet>

Answer: c

Explanation

A servlet is configured using the servlet element. Here is the definition of the
servlet element:

 <!ELEMENT servlet (icon?, servlet-name, display-name?,
 description?,
 (servlet-class|jsp-file), init-param*,
 load-on-startup?,
 run-as?, security-role-ref*) >

3. A web application is located in a directory named sales. Where should its
deployment descriptor be located? (Select one)
a sales

b sales/deployment

c sales/WEB

d sales/WEB-INF

e WEB-INF/sales

f WEB-INF

g WEB/sales

Answer: d

Explanation

The deployment descriptor is always located in the WEB-INF directory of the
web application.

4. What file is the deployment descriptor of a web application named BankApp
stored in? (Select one)
418 APPENDIX C REVIEW Q & A

a BankApp.xml

b bankapp.xml

Licensed to Tricia Fu <tricia.fu@gmail.com>

c server.xml

d deployment.xml

e WebApp.xml

f web.xml

Answer: f

Explanation

The deployment descriptor of a web application is always kept in a file named
web.xml, no matter what the name of the web application is.

5. Your servlet class depends on a utility class named com.abc.TaxUtil. Where
would you keep the TaxUtil.class file? (Select one)
a WEB-INF

b WEB-INF/classes

c WEB-INF/lib

d WEB-INF/jars

e WEB-INF/classes/com/abc

Answer: e

Explanation

All the classes that are not packaged in a JAR file must be kept in the WEB-INF/
classes directory with its complete directory structure, as per the package of the
class. The servlet container automatically adds this directory to the classpath of
the web application.

6. Your web application, named simpletax, depends on a third-party JAR file
named taxpackage.jar. Where would you keep this file? (Select one)
a simpletax

b simpletax/WEB-INF

c simpletax/WEB-INF/classes

d simpletax/WEB-INF/lib

e simpletax/WEB-INF/jars

f simpletax/WEB-INF/thirdparty

Answer: d

Explanation

All the classes that are packaged in a JAR file must be kept in the WEB-INF/lib
directory. The servlet container automatically adds all the classes in all the JAR
files kept in this directory to the classpath of the web application.

7. Which of the following deployment descriptor elements is used to specify the ini-
tialization parameters for a servlet named TestServlet? (Select one)
a No element is needed because initialization parameters are specified as attributes of

the <servlet> element.
b <servlet-param>
REVIEW Q & A 419

c <param>

d <initialization-param>

Licensed to Tricia Fu <tricia.fu@gmail.com>

e <init-parameter>

f <init-param>

Answer: f

Explanation

Each initialization must be specified using a separate <init-param> element:

 <!ELEMENT init-param (param-name, param-value, description?)>

The following is an example of a servlet definition that specifies two initialization
parameters:

 <servlet>
 <servlet-name>TestServlet</servlet-name>
 <servlet-class>com.abc.TestServlet</servlet-class>
 <init-param>
 <param-name>MAX</param-name>
 <param-value>100</param-value>
 <description>maximum limit</description>
 </init-param>
 <init-param>
 <param-name>MIN</param-name>
 <param-value>10</param-value>
 </init-param>

 </servlet>

8. Assume that the following servlet mapping is defined in the deployment descrip-
tor of a web application:

 <servlet-mapping>
 <servlet-name>TestServlet</servlet-name>
 <url-pattern>*.asp</url-pattern>
 </servlet-mapping>

Which of the following requests will not be serviced by TestServlet?
(Select one)
a /hello.asp

b /gui/hello.asp

c /gui/hello.asp/bye.asp

d /gui/*.asp

e /gui/sales/hello.asp

f /gui/asp

Answer: f

Explanation

Here, any request that ends with .asp will be directed to TestServlet. Thus,
only answer f will not be serviced by TestServlet. We suggest that you identify
the context path, servlet path, and path info for all the above options according to
the rules given in section 5.2.4.
420 APPENDIX C REVIEW Q & A

Licensed to Tricia Fu <tricia.fu@gmail.com>

CHAPTER 6—THE SERVLET CONTAINER MODEL

1. Which of the following methods will be invoked when a ServletContext is
destroyed? (Select one)
a contextDestroyed() of javax.servlet.ServletContextListener
b contextDestroyed() of javax.servlet.HttpServletContextListener
c contextDestroyed() of javax.servlet.http.ServletContextListener
d contextDestroyed() of javax.servlet.http.HttpServletContextListener

Answer: a

Explanation

Remember that the concept of servlet context applies to all the servlets and not
just HttpServlets. Therefore, interfaces related to servlet context belong to the
javax.servlet package.

2. Which of the following methods will be invoked when a ServletContext is
created? (Select one)
a contextInstantiated() of javax.servlet.ServletContextListener
b contextInitialized() of javax.servlet.ServletContextListener
c contextInited() of javax.servlet.ServletContextListener
d contextCreated() of javax.servlet.ServletContextListener

Answer: b

Explanation

On the exam, you will be asked questions that require you to know the method
names for all the methods of the servlet API. As in this question, the options may
be very confusing.

3. Consider the following class:

 import javax.servlet.*;
 public class MyListener implements ServletContextAttributeListener
 {
 public void attributeAdded(ServletContextAttributeEvent scab)
 {
 System.out.println("attribute added");
 }

 public void attributeRemoved(ServletContextAttributeEvent scab)
 {
 System.out.println("attribute removed");
 }
 }

Which of the following statements about the above class is correct? (Select one)

a This class will compile as is.
REVIEW Q & A 421

b This class will compile only if the attributeReplaced() method is added to it.

Licensed to Tricia Fu <tricia.fu@gmail.com>

c This class will compile only if the attributeUpdated() method is added to it.
d This class will compile only if the attributeChanged() method is added to it.

Answer: b

Explanation

ServletContextAttributeListener also declares the public void attri-
buteReplaced(ServletContextAttributeEvent scab) method, which is
called when an existing attribute is replaced by another one.

4. Which method is used to retrieve an attribute from a ServletContext? (Select one)
a String getAttribute(int index)

b String getObject(int index)

c Object getAttribute(int index)

d Object getObject(int index)

e Object getAttribute(String name)

f String getAttribute(String name)

g String getObject(String name)

Answer: e

Explanation

Since we can store any type of object in a servlet context, the getAttribute()
method returns an object. You can then cast the returned object to whatever type
you expect it to be.

5. Which method is used to retrieve an initialization parameter from a Servlet-
Context? (Select one)
a Object getInitParameter(int index)

b Object getParameter(int index)

c Object getInitParameter(String name)

d String getInitParameter(String name)

e String getParameter(String name)

Answer: d

Explanation

Initialization parameters are specified in the deployment descriptor. Since we can
only specify strings in the deployment descriptor, the getInitParameter()
method returns a String.

6. Which deployment descriptor element is used to specify a ServletContext-
Listener? (Select one)
a <context-listener>

b <listener>

c <servlet-context-listener>

d <servletcontextlistener>

e <servletcontext-listener>
422 APPENDIX C REVIEW Q & A

Answer: b

Licensed to Tricia Fu <tricia.fu@gmail.com>

Explanation

All the listeners that are specified in the deployment descriptor are specified using
the <listener> element:

 <listener>
 <listener-class>com.abc.MyServletContextListener</listener-class>
 </listener>

The servlet container automatically figures out the type of interface that the speci-
fied class implements.

7. Which of the following web.xml snippets correctly specify an initialization
parameter for a servlet context? (Select one)
a <context-param>

 <name>country</name>
 <value>USA</value>
 <context-param>

b <context-param>
 <param name="country" value="USA" />
 <context-param>

c <context>
 <param name="country" value="USA" />
 <context>

d <context-param>
 <param-name>country</param-name>
 <param-value>USA</param-value>
 <context-param>

Answer: d

Explanation

Initialization parameters for the servlet context are specified using the <context-
param> element, which contains exactly one <param-name> and exactly one
<param-value> element.

8. Which of the following is not a requirement of a distributable web application?
(Select one)
a It cannot depend on the notification events generated due to changes in the Serv-
letContext attribute list.

b It cannot depend on the notification events generated due to changes in the session
attribute list.

c It cannot depend on the notification events generated when a session is activated or
passivated.

d It cannot depend on the notification events generated when ServletContext is
created or destroyed.

e It cannot depend on the notification events generated when a session is created or
destroyed.
REVIEW Q & A 423

Answer: c

Licensed to Tricia Fu <tricia.fu@gmail.com>

Explanation

A servlet container may not propagate ServletContextEvents (generated
when a context is created or destroyed) and ServletContextAttribute-
Events (generated when the attribute list of a context changes) to listeners resid-
ing in other JVMs. This means that your web application cannot depend on these
notifications. The same is true for events generated when a session is created or
destroyed and when the attribute list of a session changes.

A session resides in only one JVM at a time. So, all the session attributes that
implement HttpSessionActivationListener receive notifications when the
session is activated or passivated.

9. Which of the following is a requirement of a distributable web application?
(Select one)
a It cannot depend on ServletContext for sharing information.
b It cannot depend on the sendRedirect() method.
c It cannot depend on the include() and forward() methods of the RequestDis-
patcher class.

d It cannot depend on cookies for session management.

Answer: a

Explanation

Since each JVM has a separate instance of a servlet context for each web applica-
tion (except the default one), the attribute set in a ServletContext on one
JVM will not be visible in the ServletContext for the same application on
another JVM.

CHAPTER 7—USING FILTERS

1. Which elements are allowed in the <filter-mapping> element of the deploy-
ment descriptor? (Select three)
a <servlet-name>

b <filter-class>

c <dispatcher>

d <url-pattern>

e <filter-chain>

Answers: a, c, and d

Explanation

Answer a is correct because you can map filters to named servlets, as well as URL
patterns. Answer c will control under which dispatching mechanism the filter is
invoked. Answer d allows you to map the filter to an URL pattern. Answer b is a
legitimate element, but it belongs in the <filter> element. Answer e is a nonex-
istent element.
424 APPENDIX C REVIEW Q & A

2. What is wrong with the following code?

Licensed to Tricia Fu <tricia.fu@gmail.com>

public void doFilter(ServletRequest req, ServletResponse, res,
FilterChain chain)
throws ServletException, IOException {

 chain.doFilter(req, res);
 HttpServletRequest request = (HttpServletRequest)req;
 HttpSession session = request.getSession();
 if (session.getAttribute("login") == null) {
session.setAttribute("login"”, new Login());

 }
}

a The doFilter() method signature is incorrect; it should take HttpServlet-
Request and HttpServletResponse.

b The doFilter() method should also throw FilterException.
c The call to chain.doFilter(req, res) should be this.doFilter(req, res,
chain).

d Accessing the request after chain.doFilter() results in an IllegalState-
Exception.

e Nothing is wrong with this filter.

Answer: e

Explanation

Answers a and b are wrong; the doFilter() method’s signature and thrown
exceptions are correct. Answer c, calling this.doFilter(req, res, chain),
would result in unwanted recursion. Answer d is incorrect; no code here will
throw an IllegalStateException.

3. Given these filter mapping declarations:
<filter-mapping>
 <filter-name>FilterOne</filter-name>
 <url-pattern>/admin/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
</filter-mapping>
<filter-mapping>
 <filter-name>FilterTwo</filter-name>
 <url-pattern>/users/*</url-pattern>
</filter-mapping>
<filter-mapping>
 <filter-name>FilterThree</filter-name>
 <url-pattern>/admin/*</url-pattern>
</filter-mapping>
<filter-mapping>
 <filter-name>FilterTwo</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

in what order are the filters invoked for the following browser request?

/admin/index.jsp
REVIEW Q & A 425

a FilterOne, FilterThree

b FilterOne, FilterTwo, FilterThree

Licensed to Tricia Fu <tricia.fu@gmail.com>

c FilterThree, FilterTwo

d FilterThree, FilterTwo

e FilterThree

f None of these filters are invoked.

Answer: d

Explanation

FilterOne is cannot be invoked by calling /admin/index.jsp from the
browser but only through a request dispatcher forward, so answers a and b are
incorrect. Answer c lists the correct filters but in the wrong order. Answer e names
only the first filter that is invoked. Answer d names the correct filters, in the cor-
rect order.

CHAPTER 8—SESSION MANAGEMENT

1. Which of the following interfaces or classes is used to retrieve the session associ-
ated with a user? (Select one)
a GenericServlet

b ServletConfig

c ServletContext

d HttpServlet

e HttpServletRequest

f HttpServletResponse

Answer: e

Explanation

The session associated with a user can only be retrieved using the HttpServlet-
Request.getSession() method.

2. Which of the following code snippets, when inserted in the doGet() method,
will correctly count the number of GET requests made by a user? (Select one)
a HttpSession session = request.getSession();

 int count = session.getAttribute("count");
 session.setAttribute("count", count++);

b HttpSession session = request.getSession();
 int count = (int) session.getAttribute("count");
 session.setAttribute("count", count++);

c HttpSession session = request.getSession();
 int count = ((Integer) session.getAttribute("count")).intValue();
 session.setAttribute("count", count++);

d HttpSession session = request.getSession();
 int count = ((Integer) session.getAttribute("count")).intValue();
 session.setAttribute("count", new Integer(count++));
426 APPENDIX C REVIEW Q & A

Answer: d

Licensed to Tricia Fu <tricia.fu@gmail.com>

Explanation

Remember that the setAttribute() and getAttribute() methods only work
with objects and not with primitive data types. The getAttribute() method
returns an object and so you need to cast the returned value to the actual type
(Integer, in this case). Similarly, you need to wrap the count variable into an
Integer object and pass it to the setAttribute() method.

3. Which of the following methods will be invoked on a session attribute that
implements HttpSessionBindingListener when the session is invalidated?
(Select one)
a sessionDestroyed

b valueUnbound

c attributeRemoved

d sessionInvalidated

Answer: b

Explanation

When a session is invalidated, all the session attributes are unbound from the ses-
sion. In the process, if an attribute implements HttpSessionBindingLis-
tener, the valueUnbound() method will be called on the attribute.

4. Which of the following methods will be invoked on a session attribute that
implements appropriate interfaces when the session is invalidated? (Select one)
a sessionDestroyed of HttpSessionListener
b attributeRemoved of HttpSessionAttributeListener
c valueUnbound of HttpSessionBindingListener
d sessionWillPassivate of HttpSessionActivationListener

Answer: c

Explanation

Only HttpSessionListeners and HttpSessionAttributeListeners that
are configured in the deployment descriptor will receive notification of the events
related to each of those interfaces. Therefore, even if a session attribute imple-
ments these interfaces, the sessionDestroyed() and attributeRemoved()
methods will not be called on that attribute. sessionWillPassivate() is not
called when a session is invalidated. The correct answer is therefore c.

5. Which of the following methods will expunge a session object? (Select one)
a session.invalidate();

b session.expunge();

c session.destroy();

d session.end();

e session.close();

Answer: a
REVIEW Q & A 427

Licensed to Tricia Fu <tricia.fu@gmail.com>

Explanation

The invalidate() method of HttpSession invalidates (or expunges) the ses-
sion object.

6. Which of the following method calls will ensure that a session will never be
expunged by the servlet container? (Select one)
a session.setTimeout(0);

b session.setTimeout(-1);

c session.setTimeout(Integer.MAX_VALUE);

d session.setTimeout(Integer.MIN_VALUE);

e None of these.

Answer: e

Explanation

The correct method is HttpSession.setMaxInactiveInterval(int sec-
onds);. A negative value (for example, setMaxInactiveInterval(-1)) ensures
that the session is never invalidated. However, calling this method affects only the
session on which it is called. All other sessions behave normally.

7. How can you make sure that none of the sessions associated with a web applica-
tion will ever be expunged by the servlet container? (Select one)
a session.setMaxInactiveInterval(-1);

b Set the session timeout in the deployment descriptor to -1.
c Set the session timeout in the deployment descriptor to 0 or -1.
d Set the session timeout in the deployment descriptor to 65535.
e You have to change the timeout value of all the sessions explicitly as soon as they

are created.

Answer: c

Explanation

The setMaxInactiveInterval(-1) method will only affect the session on
which it is called. The <session-config> element of web.xml affects all the
sessions of the web application. A value of 0 or less ensures that the sessions are
never invalidated.

 <web-app>
 ...
 <session-config>
 <session-timeout>0</session-timeout>
 </session-config>
 ...
 </web-app>

8. In which of the following situations will a session be invalidated? (Select two)
a No request is received from the client for longer than the session timeout period.
b The client sends a KILL_SESSION request.
c The servlet container decides to invalidate a session due to overload.
428 APPENDIX C REVIEW Q & A

d The servlet explicitly invalidates the session.

Licensed to Tricia Fu <tricia.fu@gmail.com>

e A user closes the active browser window.
f A user closes all of the browser windows.

Answers: a and d

Explanation

Sessions will be invalidated only in two cases: when no request comes from the
client for more than the session timeout period or when you call the ses-
sion.invalidate() method on a session. Closing the browser windows does
not actually invalidate the session. Even if you close all the browser windows, the
session will still be active on the server. The servlet container will only invalidate
the session after the timeout period of the session expires.

9. Which method is required for using the URL rewriting mechanism of implement-
ing session support? (Select one)
a HttpServletRequest.encodeURL()

b HttpServletRequest.rewriteURL()

c HttpServletResponse.encodeURL()

d HttpServletResponse.rewriteURL()

Answer: c

Explanation

In URL rewriting, the session ID has to be appended to all the URLs. The encode-
URL(String url) method of HttpServletResponse does that.

10. The users of your web application do not accept cookies. Which of the following
statements are correct? (Select one)
a You cannot maintain client state.
b URLs displayed by static HTML pages may not work properly.
c You cannot use URL rewriting.
d You cannot set session timeout explicitly.

Answer: b

Explanation

If cookies are not supported, you can maintain the state using URL rewriting.
Thus, answers a and c are incorrect. URL rewriting requires the session ID to be
appended to all the URLs; however, static HTML pages will not have any session
ID in the URLs that they display, so they may not work properly. Thus, answer b
is correct.

Once the session is available, it does not matter whether it is maintained using
cookies or URL rewriting. You can call all the methods as you would normally
would, including session.setMaxInactiveInterval(). Therefore, answer
d is wrong.
REVIEW Q & A 429

Licensed to Tricia Fu <tricia.fu@gmail.com>

CHAPTER 9—DEVELOPING SECURE WEB APPLICATIONS

1. Which of the following correctly defines data integrity? (Select one)
a It guarantees that information is accessible only to certain users.
b It guarantees that the information is kept in encrypted form on the server.
c It guarantees that unintended parties cannot read the information during transmis-

sion between the client and the server.
d It guarantees that the information is not altered during transmission between the cli-

ent and the server.

Answer: d

Explanation

Answers a and c describe authorization and confidentiality. Encrypting data kept
on the server may be part of some security plans, but is not covered by the servlet
specification.

2. What is the term for determining whether a user has access to a particular
resource? (Select one)
a Authorization
b Authentication
c Confidentiality
d Secrecy

Answer: a

Explanation

Authentication is the process of identifying a user. Confidentiality ensures that
third parties cannot eavesdrop on client-server communication. Encrypting com-
munications between the client and server can prevent secrecy attacks.

3. Which one of the following must be done before authorization takes place?
(Select one)
a Data validation
b User authentication
c Data encryption
d Data compression

Answer: b

Explanation

First, a user is authenticated. Once the identity of the user is determined using
any of the authentication mechanisms, authorization is determined on a per-
resource basis.

4. Which of the following actions would you take to prevent your web site from
being attacked? (Select three)
a Block network traffic at all the ports except the HTTP port.
b Audit the usage pattern of your server.
430 APPENDIX C REVIEW Q & A

c Audit the Servlet/JSP code.

Licensed to Tricia Fu <tricia.fu@gmail.com>

d Use HTTPS instead of HTTP.
e Design and develop your web application using a software engineering methodology.
f Use design patterns.

Answers: a, c, and d

Explanation

Answer a is correct because this will prevent network congestion and will close all
possible entry points to the server except HTTP. Answer b seems correct, but it is
wrong because auditing the usage pattern will help you in finding out the culprits
only after the site has been attacked—it will not prevent an attack. Answer c is
correct because auditing the Servlet/JSP code will ensure that no malicious code
exists inside your server that can open a backdoor for hackers. Answer d is correct
because HTTPS will prevent hackers from sniffing the communication between
the clients and the server, thereby preventing the leakage of sensitive information
such as usernames and passwords. Answers e and f are good for developing an
industrial-strength system but are not meant for making a system attack proof.

5. Identify the authentication mechanisms that are built into the HTTP specifica-
tion. (Select two)
a Basic
b Client-Cert
c FORM
d Digest
e Client-Digest
f HTTPS

Answers: a and d

Explanation

The HTTP specification only defines Basic and Digest authentication mechanisms.

6. Which of the following deployment descriptor elements is used for specifying the
authentication mechanism for a web application? (Select one)
a security-constraint

b auth-constraint

c login-config

d web-resource-collection

Answer: c

Explanation

The authentication mechanism is specified using the login-config element;
for example:

 <login-config>
 <auth-method>FORM</auth-method>
REVIEW Q & A 431

 <realm-name>sales</realm-name>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <form-login-config>
 <form-login-page>/formlogin.html</form-login-page>
 <form-error-page>/formerror.html</form-error-page>
 </form-login-config>
 </login-config>

The security-constraint, auth-constraint, and web-resource-col-
lection elements are used for specifying the authorization details of the resources.

7. Which of the following elements are used for defining a security constraint?
Choose only those elements that come directly under the security-
constraint element. (Select three)
a login-config

b role-name

c role

d transport-guarantee

e user-data-constraint

f auth-constraint

g authorization-constraint

h web-resource-collection

Answers: e, f, and h

Explanation

Remember that, logically, you need three things to define a security constraint: a
collection of resources (i.e., web-resource-collection), a list of roles who are
authorized to access the collection of resources (i.e., auth-constraint), and
finally, the way the application data has to be transmitted between the clients and
the server (i.e., user-data-constraint).

The following is the definition of the security-constraint element:

 <!ELEMENT security-constraint (display-name?,
 web-resource-collection+,
 auth-constraint?, user-data-constraint?)>

8. Which of the following web.xml snippets correctly identifies all HTML files
under the sales directory? (Select two)
a <web-resource-collection>

 <web-resource-name>reports</web-resource-name>
 <url-pattern>/sales/*.html</url-pattern>
 </web-resource-collection>

b <resource-collection>
 <web-resource-name>reports</web-resource-name>
 <url-pattern>/sales/*.html</url-pattern>
 </resource-collection>

c <resource-collection>
 <resource-name>reports</resource-name>
 <url-pattern>/sales/*.html</url-pattern>
432 APPENDIX C REVIEW Q & A

 </resource-collection>

Licensed to Tricia Fu <tricia.fu@gmail.com>

d <web-resource-collection>
 <web-resource-name>reports</web-resource-name>
 <url-pattern>/sales/*.html</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>

Answers: a and d

Explanation

A collection of web resources is defined using the web-resource-collection
element, which is defined as follows:

 <!ELEMENT web-resource-collection (web-resource-name, description?,
 url-pattern*, http-method*)>

Observe that http-method is optional. The absence of the http-method ele-
ment is equivalent to specifying all HTTP methods.

9. You want your PerformanceReportServlet to be accessible only to managers.
This servlet generates a performance report in the doPost() method based on a
FORM submitted by a user. Which of the following correctly defines a security
constraint for this purpose? (Select one)

a <security-constraint>

 <web-resource-collection>
 <web-resource-name>performance report</web-resource-name>
 <url-pattern>/servlet/PerformanceReportServlet</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>

 <auth-constraint>

 <role-name>manager</role-name>
 </auth-constraint>

 <user-data-constraint>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>

 </security-constraint>

b <security-constraint>

 <web-resource-collection>
 <web-resource-name>performance report</web-resource-name>
 <url-pattern>/servlet/PerformanceReportServlet</url-pattern>

 <http-method>*</http-method>
 </web-resource-collection>

 <accessibility>
 <role-name>manager</role-name>
REVIEW Q & A 433

 </accessibility>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>

 </security-constraint>

c <security-constraint>

 <web-resource-collection>

 <web-resource-name>performance report</web-resource-name>
 <url-pattern>/servlet/PerformanceReportServlet</url-pattern>
 <http-method>POST</http-method>
 </web-resource-collection>

 <accessibility>
 <role-name>manager</role-name>
 </accessibility>

 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>

 </security-constraint>

d <security-constraint>

 <web-resource-collection>
 <web-resource-name>performance report</web-resource-name>
 <url-pattern>/servlet/PerformanceReportServlet</url-pattern>
 <http-method>POST</http-method>
 </web-resource-collection>

 <auth-constraint>
 <role-name>manager</role-name>
 </auth-constraint>

Answer: d

Explanation

Since the question states that the servlet generates the report in the doPost()
method, either the <http-method> must specify POST or there should be no
<http-method> (which means the restriction applies to all the methods). Thus,
answer a is incorrect. Further, the question states that the report should be accessible
only to managers. This needs to be specified using the <auth-constraint> ele-
ment. There is no such element as <accessibility>. Therefore, answers b and
c are incorrect. Answer d is correct because both of the above requirements are satis-
fied. The question does not say anything about the <user-data-constraint>
element, which is optional anyway.

10. Which of the following statements regarding authentication mechanisms are cor-
rect? (Select two)
a The HTTP Basic mechanism transmits the username/password “in the open.”
b The HTTP Basic mechanism uses HTML FORMs to collect usernames/passwords.
434 APPENDIX C REVIEW Q & A

c The transmission method in the Basic and FORM mechanisms is the same.

Licensed to Tricia Fu <tricia.fu@gmail.com>

d The method of capturing the usernames/passwords in the Basic and FORM mecha-
nisms is the same.

Answers: a and c

Explanation

The HTTP Basic mechanism uses a browser-specific way (usually a dialog box) to
capture the username and password, while the FORM mechanism uses an HTML
FORM to do the same. However, both mechanisms transmit the captured values
in clear text without any encryption. Therefore, answers a and c are correct.

11. Which of the following statements are correct for an unauthenticated user?
(Select two)
a HttpServletRequest.getUserPrincipal() returns null.
b HttpServletRequest.getUserPrincipal() throws SecurityException.
c HttpServletRequest.isUserInRole() returns false.
d HttpServletRequest.getRemoteUser() throws a SecurityException.

Answers: a and c

Explanation

None of the three methods—getUserPrincipal(), isUserInRole(), and
getRemoteUser()—throws an exception. We suggest you read the description
of these methods in the JavaDocs.

CHAPTER 10—THE JSP TECHNOLOGY MODEL—THE BASICS

1. Consider the following code and select the correct statement about it from the
options below. (Select one)

 <html><body>
 <%! int aNum=5 %>
 The value of aNum is <%= aNum %>
 </body></html>

a It will print "The value of aNum is 5" to the output.
b It will flag a compile-time error because of an incorrect declaration.
c It will throw a runtime exception while executing the expression.
d It will not flag any compile time or runtime errors and will not print anything to the

output.

Answer: b

Explanation

It will flag a compile-time error because the variable declaration <%! int aNum=5 %>
is missing a ; at the end. It should be

 <%! int aNum=5; %>

2. Which of the following tags can you use to print the value of an expression to the
REVIEW Q & A 435

output stream? (Select two)

Licensed to Tricia Fu <tricia.fu@gmail.com>

a <%@ %>

b <%! %>

c <% %>

d <%= %>

e <%-- --%>

Answers: c and d

Explanation

You can use a JSP expression to print the value of an expression to the output
stream. For example, if the expression is x+3, you can write <%= x+3 %>. Answer
d is a JSP expression and is therefore the correct answer. But you can also use a
scriptlet to print the value of an expression to the output stream as
<% out.print(x+3); %>. Answer c is a scriptlet and is therefore also correct. If
the exam asks you to select one correct option, then select the expression syntax,
as in answer d. But if the exam asks for two correct answers, then select the script-
let syntax as well.

3. Which of the following methods is defined by the JSP engine? (Select one)
a jspInit()

b _jspService()

c _jspService(ServletRequest, ServletResponse)

d _jspService(HttpServletRequest, HttpServletResponse)

e jspDestroy()

Answer: d

Explanation

The _jspService() method of the javax.servlet.jsp.HttpJspPage class
is defined by the JSP engine. HttpJspPage is meant to serve HTTP requests,
and therefore the _jspService() method accepts the javax.servlet.
http.HttpServletRequest and javax.servlet.http.HttpServlet-

Response parameters.

4. Which of the following exceptions may be thrown by the _jspService()
method? (Select one)
a javax.servlet.ServletException

b javax.servlet.jsp.JSPException

c javax.servlet.ServletException and javax.servlet.jsp.JSPException
d javax.servlet.ServletException and java.io.IOException
e javax.servlet.jsp.JSPException and java.io.IOException

Answer: d

Explanation

The _jspService() method may throw a javax.servlet.ServletExcep-
tion, a java.io.IOException, or a subclass of these two exception classes.
Note that the _jspService() method does not define javax.servlet.jsp.
436 APPENDIX C REVIEW Q & A

JspException in its throws clause.

Licensed to Tricia Fu <tricia.fu@gmail.com>

5. Write the name of the method that you can use to initialize variables declared in a
JSP declaration in the space provided. (Write only the name of the method. Do
not write the return type, parameters, or parentheses.)
a [_____________]

Answer: jspInit

Explanation

The jspInit() method is the first method called by the JSP engine on a JSP
page. It is called only once to allow the page to initialize itself. You can use this
method to initialize variables declared in JSP declarations (<%! %>).

6. Which of the following correctly declares that the current page is an error page
and also enables it to take part in a session? (Select one)
a <%@ page pageType="errorPage" session="required" %>

b <%@ page isErrorPage="true" session="mandatory" %>

c <%@ page errorPage="true" session="true" %>

d <%@ page isErrorPage="true" session="true" %>

e None of the above.

Answer: d

Explanation

The isErrorPage attribute accepts a Boolean value (true or false) and indi-
cates whether the current page is capable of handling errors. The session
attribute accepts a Boolean value (true or false) and indicates whether the cur-
rent page must take part in a session. Therefore, answer d is correct. Since the
pageType attribute is not a valid attribute for a page directive, answer a is not
correct. The mandatory value is not a valid value for the session attribute,
which means answer b is not correct. The errorPage attribute is a valid
attribute, but it is used for specifying another page as an error handler for the cur-
rent page. Therefore, answer c is also incorrect.

CHAPTER 11—THE JSP TECHNOLOGY MODEL—ADVANCED TOPICS

1. What will be the output of the following code? (Select one)

 <html><body>
 <% x=3; %>
 <% int x=5; %>
 <%! int x=7; %>
 x = <%=x%>, <%=this.x%>
 </body></html>

a x = 3, 5

b x = 3, 7

c x = 5, 3

d x = 5, 7

e Compilation error
REVIEW Q & A 437

Answer: c

Licensed to Tricia Fu <tricia.fu@gmail.com>

Explanation

The above code will translate to servlet code similar to the following:

 public class ...
 {
 int x = 7;

 public void _jspService(…)
 {
 ...
 out.print("<html><body>");
 x = 3;
 int x = 5;
 out.write("x = "); out.print(x);
 out.write(","); out.print(this.x);
 out.print("</body></html>");
 }
 }

The declaration will create a member variable x and initialize it to 7. The first
scriptlet, x=3, will change its value to 3. Then, the second scriptlet will declare a
local variable x and initialize it to 5. The first expression refers to the local vari-
able x and will therefore print 5. The second expression uses the keyword this to
refer to the member or instance variable x, which was set to 3. Thus, the correct
answer is c, x = 5, 3.

2. What will be the output of the following code? (Select one)

 <html><body>
 The value is <%=""%>
 </body></html>

a Compilation error
b Runtime error
c The value is

d The value is null

Answer: c

Explanation

The expression is converted to

 out.print("");

Thus, the correct answer is c.

3. Which of the following implicit objects is not available to a JSP page by default?
(Select one)
a application

b session

c exception

d config
438 APPENDIX C REVIEW Q & A

Answer: c

Licensed to Tricia Fu <tricia.fu@gmail.com>

Explanation

The implicit variables application and config are always available to a JSP
page. The implicit variable session is available if the value of the page direc-
tive’s session attribute is set to true. Since it is set to true by default, the
implicit variable session is also available by default. The implicit variable
exception is available only if the value of the page directive’s isErrorPage
attribute is set to true. It is set to false by default, so the implicit variable
exception is not available by default. We have to explicitly set it to true:

 <%@ page isErrorPage="true" %>

The correct answer, therefore, is c.

4. Which of the following implicit objects can you use to store attributes that need
to be accessed from all the sessions of a web application? (Select two)
a application

b session

c request

d page

e pageContext

Answers: a and e

Explanation

To store attributes that are accessible from all the sessions of a web application, we
have to put them in the application scope. To achieve this, we have to use the
implicit object application. If the exam asks you to select one answer, then
select application. If the exam asks for two correct answers, then read the
question carefully. It says, “Which of the following implicit objects can you use to
store attributes that need to be accessed from all the sessions of a web applica-
tion?” We can also use pageContext to store objects in the application scope as
pageContext.setAttribute("name", object, PageContext.APPLICA-
TION_SCOPE); and pageContext.getAttribute("name", PageContext.
APPLICATION_SCOPE);.

5. The implicit variable config in a JSP page refers to an object of type: (Select one)
a javax.servlet.PageConfig

b javax.servlet.jsp.PageConfig

c javax.servlet.ServletConfig

d javax.servlet.ServletContext

Answer: c
The implicit variable config in a JSP page refers to an object of type
javax.servlet.ServletConfig.

6. A JSP page can receive context initialization parameters through the deployment
REVIEW Q & A 439

descriptor of the web application.

Licensed to Tricia Fu <tricia.fu@gmail.com>

a True
b False

Answer: a

Explanation

Context initialization parameters are specified by the <context-param> tags in
web.xml. These parameters are for the whole web application and not specific to
any servlet or JSP page. Thus, all components of a web application can access con-
text initialization parameters.

7. Which of the following will evaluate to true? (Select two)
a page == this

b pageContext == this

c out instanceof ServletOutputStream

d application instanceof ServletContext

Answers: a and d

Explanation

The implicit variable page refers to the current servlet, and therefore answer a
will evaluate to true. The application object refers to an object of type Serv-
letContext, which means answer d will also evaluate to true. The pageCon-
text object refers to an object of type PageContext and not to the servlet,
which means answer b will evaluate to false. The out implicit variable refers to
an instance of javax.servlet.jsp.JspWriter and not to an instance of
javax.servlet.ServletOutputStream, so answer c evaluates to false.
Note that JspWriter is derived from java.io.Writer, while Servlet-
OutputStream is derived from java.io.OutputStream.

8. Select the correct statement about the following code. (Select one)

 <%@ page language="java" %>
 <html><body>
 out.print("Hello ");
 out.print("World ");
 </body></html>

a It will print Hello World in the output.
b It will generate compile-time errors.
c It will throw runtime exceptions.
d It will only print Hello.
e None of above.

Answer: e

Explanation

The lines out.print("Hello ") and out.print("World ") are not con-
tained in a scriptlet (<%...%>). The JSP engine assumes they are a part of the tem-
plate text and sends them to the browser without executing them on the server.
Therefore, it will print the two statements in the browser window:
440 APPENDIX C REVIEW Q & A

 out.print("Hello ");out.print("World ");

Licensed to Tricia Fu <tricia.fu@gmail.com>

9. Select the correct statement about the following code. (Select one)

 <%@ page language="java" %>
 <html><body>
 <%
 response.getOutputStream().print ("Hello ");
 out.print("World");
 %>
 </body></html>

a It will print Hello World in the output.
b It will generate compile-time errors.
c It will throw runtime exceptions.
d It will only print Hello.
e None of above.

Answer: c

Explanation

As explained in chapter 4, “The Servlet model,” the OutputStream of a response
object is used for sending binary data to the client while the Writer object is
used for sending character data. However, we cannot use both on the same
response object. Since the JSP engine automatically gets the JspWriter from the
response object to output the content of the JSP as character data, the call to
getOutputStream() throws a java.lang.IllegalStateException. Thus,
the correct answer is c.

10. Which of the following implicit objects does not represent a scope container?
(Select one)

a application

b session

c request

d page

e pageContext

Answer: d

Explanation

The implicit objects application, session, and request represent the con-
tainers for the scopes, application, session, and request, respectively. The implicit
object page refers to the generated Servlet and does not represent any scope con-
tainer. The implicit object pageContext represents the page scope container, so
the correct answer is d.

11. What is the output of the following code? (Select one)

 <html><body>
 <% int i = 10 ;%>
REVIEW Q & A 441

 <% while(--i>=0) { %>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 out.print(i);
 <% } %>
 </body></html>

a 9876543210

b 9

c 0

d None of the above.

Answer: d

Explanation

The statement out.print(i) is not inside a scriptlet and is part of the template
text. The above JSP page will print

 out.print(i);out.print(i);out.print(i);......

ten times.
When in doubt, always convert a JSP code to its equivalent servlet code step

by step:

 out.write("<html><body>");
 int i = 10;
 while (--i>=) {
 out.write("out.print(i); ");
 }
 out.write("<html><body>");

12. Which of the following is not a valid XML-based JSP tag? (Select one)
a <jsp:directive.page />

b <jsp:directive.include />

c <jsp:directive.taglib />

d <jsp:declaration></jsp:declaration>

e <jsp:scriptlet></jsp:scriptlet>

f <jsp:expression></jsp:expression>

Answer: c

Explanation

The tag <jsp:directive.taglib> is not a valid XML-based tag. Remember
that tag library information is provided in the <jsp:root> element.

13. Which of the following XML syntax format tags do not have an equivalent in JSP
syntax format? (Select two)
a <jsp:directive.page/>

b <jsp:directive.include/>

c <jsp:text></jsp:text>

d <jsp:root></jsp:root>

e <jsp:param/>

Answers: c and d
442 APPENDIX C REVIEW Q & A

Licensed to Tricia Fu <tricia.fu@gmail.com>

Explanation

The equivalent of <jsp:directive.page/> is <%@ page %>. The equivalent of
<jsp:directive.include/> is <%@ include %>. The <jsp:param/> tag is
the same for both the syntax formats. Thus, the correct answers are c and d. The
tags <jsp:text> and <jsp:root> have no equivalent in the JSP syntax format.

14. Which of the following is a valid construct to declare that the implicit variable
session should be made available to the JSP page? (Select one)
a <jsp:session>true</jsp:session>

b <jsp:session required="true" />

c <jsp:directive.page>
 <jsp:attribute name="session" value="true" />
 </jsp:directive.page>

d <jsp:directive.page session="true" />

e <jsp:directive.page attribute="session" value="true" />

Answer: d

Explanation

The correct way to declare that the implicit variable session should be made
available to the JSP page in XML format is shown in answer d: <jsp:direc-
tive.page session="true" />.

CHAPTER 12—REUSABLE WEB COMPONENTS

1. Which of the following JSP tags can be used to include the output of another JSP
page into the output of the current page at request time? (Select one)
a <jsp:insert>

b <jsp:include>

c <jsp:directive.include>

d <jsp:directive:include>

e <%@ include %>

Answer: b

Explanation

The tags in answers a and d are not valid JSP tags. Answers c and e are valid tags in
XML syntax and JSP syntax, respectively, but they are directives and include other
JSP pages or HTML/XML files at translation time. Answer b is the right answer
because it includes the output of another component, JSP page, or Servlet at
request time.

2. Consider the contents of the following two JSP files:

File 1: test1.jsp

 <html><body>
 <% String message = "Hello"; %>
REVIEW Q & A 443

 //1 Insert LOC here.

Licensed to Tricia Fu <tricia.fu@gmail.com>

 The message is <%= message %>
 </body></html>

File 2: test2.jsp

 <% message = message + " world!"; %>

Which of the following lines can be inserted at //1 in test1.jsp so that it
prints "The message is Hello world!" when requested? (Select one)
a <%@ include page="test2.jsp" %>

b <%@ include file="test2.jsp" />

c <jsp:include page="test2.jsp" />

d <jsp:include file="test2.jsp" />

Answer: b

Explanation

Since the test2.jsp file does not declare or define the variable message, it
cannot compile on its own. This rules out dynamic inclusion using the
<jsp:include> action. The file test1.jsp could print "Hello world" if it
statically included test2.jsp. This could be done using the include directive:
<%@ include %>. For the include directive, the valid attribute is file and not
page, so answer b is correct.

3. Which of the following is a correct way to pass a parameter equivalent to the
query string user=mary at request time to an included component? (Select one)
a <jsp:include page="other.jsp" >

 <jsp:param paramName="user" paramValue="mary" />
 </jsp:include>

b <jsp:include page="other.jsp" >
 <jsp:param name="mary" value="user" />
 </jsp:include>

c <jsp:include page="other.jsp" >
 <jsp:param value="mary" name="user" />
 </jsp:include>

d <jsp:include page="other.jsp" >
 <jsp:param param="user" value="mary"/>
 </jsp:include>

e <jsp:include page="other.jsp" >
 <jsp:param user="mary" />
 </jsp:include>

Answer: c

Explanation

The only valid attributes that a <jsp:param> tag can have are name and value.
This rules out answers a, d, and e. Answer b, <jsp:param name="mary"
value="user" />, is equivalent to the query string mary=user. In the included
444 APPENDIX C REVIEW Q & A

component, a call to request.getParameter("mary"); will return "user".

Licensed to Tricia Fu <tricia.fu@gmail.com>

Answer c, <jsp:param value="mary" name="user" />, is equivalent to the
query string user=mary. In the included component, a call to request.getPa-
rameter("user"); will return "mary". Therefore, answer c is the correct answer.

4. Identify the JSP equivalent of the following code written in a servlet. (Select one)

 RequestDispatcher rd = request.getRequestDispatcher("world.jsp");
 rd.forward(request, response);

a <jsp:forward page="world.jsp"/>

b <jsp:action.forward page="world.jsp"/>

c <jsp:directive.forward page="world.jsp"/>

d <%@ forward file="world.jsp"%>

e <%@ forward page="world.jsp"%>

Answer: a

Explanation

The action tags in answers b through e are all invalid JSP tags. Answer a,
<jsp:forward page="relativeURL" />, is the only valid way to write a for-
ward action.

5. Consider the contents of two JSP files:

File 1: test1.jsp

 <html><body>
 <% pageContext.setAttribute("ninetyNine", new Integer(99)); %>

 //1

 </body></html>

File 2: test2.jsp

 The number is <%= pageContext.getAttribute("ninetyNine") %>

Which of the following, when placed at line //1 in the test1.jsp file, will
allow the test2.jsp file to print the value of the attribute when test1.jsp is
requested? (Select one)

a <jsp:include page="test2.jsp" />

b <jsp:forward page="test2.jsp" />

c <%@ include file="test2.jsp" %>

d None of the above because objects placed in pageContext have the page scope
and cannot be shared with other components.

Answer: c

Explanation

Objects placed in pageContext have the page scope and are accessible within a
single translation unit. Since files included statically using the include directive
REVIEW Q & A 445

become an integral part of the same translation unit as the including file, they can

Licensed to Tricia Fu <tricia.fu@gmail.com>

share objects in the page scope via the PageContext container. So the correct
answer is c: <%@ include file="test2.jsp" %>.

6. Consider the contents of two JSP files:

File 1: this.jsp

 <html><body><pre>
 <jsp:include page="that.jsp" >
 <jsp:param name="color" value="red" />
 <jsp:param name="color" value="green" />
 </jsp:include>
 </pre></body></html>

File 2: that.jsp

 <%
 String colors[] = request.getParameterValues("color");
 for (int i=0; i<colors.length; i++)
 {
 out.print(colors[i] + " ");
 }
 %>

What will be the output of accessing the this.jsp file via the following URL?
(Select one)

 http://localhost:8080/chapter12/this.jsp?color=blue

a blue

b red green

c red green blue

d blue red green

e blue green red

Answer: c

Explanation

The parameters passed via the <jsp:param> tag to an included component tag
take precedence over the parameters already present in the request object of the
including component. Also, the order of values passed via the <jsp:param> tag
is the same as the order in which the tags appear. Thus, the correct answer is c.
The output will be red green blue.

7. Consider the contents of two JSP files:

File 1: this.jsp

 <html><body>

 <%= request.getParameter("color") %>

 <jsp:include page="that.jsp" >
446 APPENDIX C REVIEW Q & A

 <jsp:param name="color" value="red" />
 </jsp:include>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <%= request.getParameter("color") %>

 </body></html>

File 2: that.jsp

 <%= request.getParameter("color") %>

What will be the output of accessing the this.jsp file via the following URL?
(Select one)

 http://localhost:8080/chapter12/this.jsp?color=blue

a blue red blue

b blue red red

c blue blue red

d blue red null

Answer: a

Explanation

The first call to request.getParameter("color") in the this.jsp file
returns blue. This file then includes the that.jsp file and passes a value of red
for the color attribute. Since the values passed via <jsp:param> take precedence
over the original values, a call to request.getParameter("color") in
that.jsp returns red. However, this new value exists and is available only
within the included component—that is, that.jsp. So, after the that.jsp
page finishes processing, a call to request.getParameter("color") in the
this.jsp file again returns blue. Thus, the correct answer is a. The output will
be blue red blue.

8. Consider the contents of three JSP files:

File 1: one.jsp

 <html><body><pre>

 <jsp:include page="two.jsp" >
 <jsp:param name="color" value="red" />
 </jsp:include>

 </pre></body></html>

File 2: two.jsp

 <jsp:include page="three.jsp" >
 <jsp:param name="color" value="green" />
 </jsp:include>

File 3: three.jsp

 <%= request.getParameter("color") %>

What will be the output of accessing the one.jsp file via the following URL?
(Select one)
REVIEW Q & A 447

 http://localhost:8080/chapter12/one.jsp?color=blue

Licensed to Tricia Fu <tricia.fu@gmail.com>

a red

b green

c blue

d The answer cannot be determined.

Answer: b

Explanation

The output is generated by the three.jsp file. Since the two.jsp file calls
three.jsp and provides a value of green, this value takes precedence over all
the previous values passed to one.jsp and two.jsp. Thus, the correct answer is
b. The output will be green.

CHAPTER 13—CREATING JSPS WITH THE EXPRESSION LANGUAGE (EL)

1. Consider the following code:
 <html><body>
 ${(5 + 3 + a > 0) ? 1 : 2}
 </body></html>

Select the correct statement from the options below:
a It will print 1 because the statement is valid.
b It will print 2 because the statement is valid.
c It will throw an exception because a is undefined.
d It will throw an exception because the expression’s syntax is invalid.

Answer: a

Explanation

Using a letter in an EL statement is valid, and so is the statement’s syntax. So
answers c and d are incorrect. Since the condition evaluates to true, the first of
the two results will be displayed, and a is the correct answer.

2. Which statement best expresses the purpose of a tag library descriptor (TLD) in
an EL function?
a It contains the Java code that will be compiled.
b It invokes the Java method as part of the JSP.
c It matches the tag library with a URI.
d It matches function names to tags that can be used in the JSP.

Answer: d

Explanation

The web.xml file matches tag libraries with URIs, so answer c is incorrect. Java
code is contained in a .java file and methods are invoked from within a JSP
(.jsp). Thus, answers a and b are incorrect. A tag library descriptor (.tld)
matches function names with names that can be used in JSPs, so answer d is cor-
rect. To be more specific, it matches a Java method signature with a class name for
use in JSPs.
448 APPENDIX C REVIEW Q & A

Licensed to Tricia Fu <tricia.fu@gmail.com>

3. Which of the following variables is not available for use in EL expressions?
a param
b cookie
c header
d pageContext
e contextScope

Answer: e

Explanation

These implicit variables are similar to others used in JSPs. The param, header,
and cookie variables access the same objects as those used in request/response
access. The pageContext variable provides access to scope variables. So answers
a through d are incorrect. But there’s no such thing as a contextScope vari-
able—use applicationScope to access context-related information.

4. Which tags tell the web container where to find your TLD file in your filesystem?
a <taglib-directory></taglib-directory>

b <taglib-uri></taglib-uri>

c <taglib-location></taglib-location>

d <tld-directory></tld-directory>

e <taglib-name></taglib-name>

Answer: c

Explanation

The <taglib-name> and <taglib-uri> elements provide the library’s name
and URI, but not its place in filesystem, so b and e are incorrect. There are no
<taglib-directory> or <tld-directory tags>, which means answers a
and d are incorrect. The <taglib-location> elements specify the directory
containing the TLD, starting with /WEB-INF/. Therefore, the answer is c.

5. Which two of the following expressions won’t return the header’s accept field?
a ${header.accept}

b ${header[accept]}

c ${header['accept']}

d ${header["accept"]}

e ${header.'accept'}

Answers: b and e

Explanation

EL arrays can contain strings as long as they are surrounded by single or double
quotes. So c and d will return the accept field, and b won’t. Similarly, the EL
property operator (.) can contain a string as long as it isn’t surrounded by quotes.
So a will return a value and e will cause an error.

6. When writing a TLD, which tags would you use to surround fnName(int num),
REVIEW Q & A 449

a Java method declared in a separate class?

Licensed to Tricia Fu <tricia.fu@gmail.com>

a <function-signature></function-signature>

b <function-name></function-name>

c <method-class></method-class>

d <method-signature></method-signature>

e <function-class></function-class>

Answer: a

Explanation

Since EL describes these structures as functions, c and d are incorrect. Also, the func-
tion’s name is contained in <name> tags, not <function-name>, so b is incorrect.
Since <function-signature> declares the Java method, a is the correct answer.

7. Which of the following method signatures is usable in EL functions?
a public static expFun(void)

b expFun(void)

c private expFun(void)

d public expFun(void)

e public native expFun(void)

Answer: a

Explanation

EL functions must refer to methods with modifiers of public and static.
Therefore, a is the only acceptable answer. Similarly, the class containing the
method must be public.

CHAPTER 14—USING JAVABEANS

1. Which of the following is a valid use of the <jsp:useBean> action? (Select one)
a <jsp:useBean id="address" class="AddressBean" />

b <jsp:useBean name="address" class="AddressBean"/>

c <jsp:useBean bean="address" class="AddressBean" />

d <jsp:useBean beanName="address" class="AddressBean" />

Answer: a

Explanation

name and bean are not valid attributes for a <jsp:useBean> tag. Thus, answers
b and c are incorrect. The beanName and class attributes cannot be used
together, which means answer d is incorrect. Further, the id attribute is the man-
datory attribute of <jsp:useBean> and is missing from answers b, c, and d.
Therefore, only answer a is correct.

2. Which of the following is a valid way of getting a bean’s property? (Select one)
a <jsp:useBean action="get" id="address" property="city" />

b <jsp:getProperty id="address" property="city" />

c <jsp:getProperty name="address" property="city" />

d <jsp:getProperty bean="address" property="*" />
450 APPENDIX C REVIEW Q & A

Answer: c

Licensed to Tricia Fu <tricia.fu@gmail.com>

Explanation

The <jsp:getProperty> action has only two attributes—name and property—
and both are mandatory. Therefore, answer c is correct.

3. Which of the following are valid uses of the <jsp:useBean> action? (Select two)
a <jsp:useBean id="address" class="AddressBean" name="address" />

b <jsp:useBean id="address" class="AddressBean"

 type="AddressBean" />

c <jsp:useBean id="address" beanName="AddressBean"
 class="AddressBean" />

d <jsp:useBean id="address" beanName="AddressBean"
 type="AddressBean" />

Answers: b and d

Explanation

Answer a is not correct because name is not a valid attribute in <jsp:useBean>.
Answer c is not correct because beanName and class cannot be used together.

4. Which of the following gets or sets the bean in the ServletContext container
object? (Select one)
a <jsp:useBean id="address" class="AddressBean" />

b <jsp:useBean id="address" class="AddressBean" scope="application" />

c <jsp:useBean id="address" class="AddressBean" scope="servlet" />

d <jsp:useBean id="address" class="AddressBean" scope="session" />

e None of the above.

Answer: b

Explanation

The correct answer is b, because the ServletContext container represents the
application scope. Answer a is not correct because if the scope is not specified,
then the page scope is assumed by default.

5. Consider the following code:

 <html><body>
 <jsp:useBean id="address" class="AddressBean" scope="session" />
 state = <jsp:getProperty name="address" property="state" />
 </body></html>

Which of the following are equivalent to the third line above? (Select three)
a <% state = address.getState(); %>

b <% out.write("state = "); out.print(address.getState()); %>

c <% out.write("state = "); out.print(address.getstate()); %>

d <% out.print("state = " + address.getState()); %>

e state = <%= address.getState() %>

f state = <%! address.getState(); %>
REVIEW Q & A 451

Answers: b, d, and e

Licensed to Tricia Fu <tricia.fu@gmail.com>

Explanation

The third line in the code prints "state = " followed by the actual value of the
property in the output HTML. Answer a is incorrect, because it is inside a script-
let and does not print any output. Answer c is incorrect because the standard con-
vention that the beans follow is to capitalize the first character of the property’s
name. Therefore, it should be getState() and not getstate(). Answer f is
incorrect because the method call address.getState() is in a declaration
instead of an expression. Answers b, d, and e all do the same thing and are all
equivalent to the third line of the code.

6. Which of the options locate the bean equivalent to the following action?
(Select three)

 <jsp:useBean id="address" class="AddressBean" scope="request" />

a request.getAttribute("address");

b request.getParameter("address");

c getServletContext().getRequestAttribute("address");

d pageContext.getAttribute("address",PageContext.REQUEST_SCOPE);

e pageContext.getRequest().getAttribute("address");

f pageContext.getRequestAttribute("address");

g pageContext.getRequestParameter("address");

Answers: a, d, and e

Explanation

Answer b is not correct because beans cannot be get or set as request parameters.
They can be get and set as request attributes. Answer c is incorrect because get-
ServletContext() returns an object of type ServletContext and Servlet-
Context has nothing to do with the request scope. Answers f and g are incorrect
because the methods getRequestAttribute() and getRequestParameter()
do not exist in PageContext. Answer a is the simplest way to do that. Answers d
and e achieve the same result using the PageContext object. PageContext is
explained in chapter 11, “The JSP technology model—advanced topics.”

7. Consider the following code for address.jsp:

 <html><body>
 <jsp:useBean id="address" class="AddressBean" />
 <jsp:setProperty name="address" property="city" value="LosAngeles" />
 <jsp:setProperty name="address" property="city" />
 <jsp:getProperty name="address" property="city" />
 </body></html>

What is the output if the above page is accessed via the URL

 http://localhost:8080/chap14/address.jsp?city=Chicago&city=Miami

Assume that the city property is not an indexed property. (Select one)
452 APPENDIX C REVIEW Q & A

a LosAngeles

b Chicago

Licensed to Tricia Fu <tricia.fu@gmail.com>

c Miami

d ChicagoMiami

e LosAngelesChicagoMaimi

f It will not print anything because the value will be null or "".

Answer: b

Explanation

The first <jsp:setProperty> action sets the value of the city property explicitly
to LosAngeles using the value attribute. The second <jsp:setProperty>
action overwrites this value with the value from the request parameter. Since it is
not an indexed property, only the first value from the parameter is used. Thus, the
correct answer is b, Chicago.

8. Consider the following code:

 <html><body>

 <%{%>
 <jsp:useBean id="address" class="AddressBean" scope="session" />
 <%}%>

 //1

 </body></html>

Which of the following can be placed at line //1 above to print the value of the
street property? (Select one)
a <jsp:getProperty name="address" property="street" />

b <% out.print(address.getStreet()); %>

c <%= address.getStreet() %>

d <%= ((AddressBean)session.getAttribute(
 "address")).getStreet() %>

e None of the above; the bean is nonexistent at this point.

Answer: d

Explanation

The <jsp:useBean> declaration puts an object of type AddressBean in the
session scope. The pair of curly braces ({ and }) marks the scope of the variable
address and, therefore, we cannot use answers a, b, and c. However, the object is
still existent and is available in the session scope. This means we can use the
implicit variable session to get the address object, typecast the returned value
to AddressBean, and call its getStreet() method to print the street prop-
erty. Therefore, answer d is correct.

9. Consider the following code:

 <html><body>

 <%{%>
 <jsp:useBean id="address" class="AddressBean" scope="session" />
REVIEW Q & A 453

 <%}%>

Licensed to Tricia Fu <tricia.fu@gmail.com>

 <jsp:useBean id="address" class="AddressBean" scope="session" />
 <jsp:getProperty name="address" property="street" />

 </body></html>

Which of the following is true about the above code? (Select one)
a It will give translation-time errors.
b It will give compile-time errors.
c It may throw runtime exceptions.
d It will print the value of the street property.

Answer: a

Explanation

A translation time error will occur if we use the same ID more than once in the
same translation unit.

10. Consider the following servlet code:

 //...

 public void service (HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 //1
 }

Which of the following can be used at //1 to retrieve a JavaBean named
address present in the application scope? (Select one)
a getServletContext().getAttribute("address");

b application.getAttribute("address");

c request.getAttribute("address",APPLICATION_SCOPE);

d pageContext.getAttribute("address",APPLICATION_SCOPE);

Answer: a

Explanation

The implicit variables are automatically available in the _jspService() method
of a JSP page but are not defined automatically in a Servlet class. We cannot use
the implicit variables application and pageContext because the code is part
of a servlet’s service() method and not of a JSP page. So, answers b and d are
not correct. There is no such method as getAttribute(String, int) in
HttpServletRequest that accepts an integer to identify scopes. Therefore,
answer c is also incorrect.

11. Consider the following code, contained in a file called this.jsp:

 <html><body>
 <jsp:useBean id="address" class="AddressBean" />
 <jsp:setProperty name="address" property="*" />
454 APPENDIX C REVIEW Q & A

 <jsp:include page="that.jsp" />
 </body></html>

Licensed to Tricia Fu <tricia.fu@gmail.com>

Which of the following is true about the AddressBean instance declared in this
code? (Select one)
a The bean instance will not be available in that.jsp.
b The bean instance may or may not be available in that.jsp, depending on the

threading model implemented by that.jsp.
c The bean instance will be available in that.jsp, and the that.jsp page can print

the values of the beans properties using <jsp:getProperty />.
d The bean instance will be available in that.jsp and the that.jsp page can print

the values of the bean’s properties using <jsp:getProperty /> only if that.jsp
also contains a <jsp:useBean/> declaration identical to the one in this.jsp and
before using <jsp:getProperty/>.

Answer: a

Explanation

By default, the scope is page, so the bean is not available in that.jsp. If it were
any other scope, the answer would have been d.

12. Consider the following code contained in a file named this.jsp (the same as
above, except the fourth line):

 <html><body>
 <jsp:useBean id="address" class="AddressBean" />
 <jsp:setProperty name="address" property="*" />
 <%@ include file="that.jsp" %>
 </body></html>

Which of the following is true about the AddressBean instance declared in the
above code? (Select one)
a The bean instance will not be available in that.jsp.
b The bean instance may or may not be available in that.jsp, depending on the

threading model implemented by that.jsp.
c The bean instance will be available in that.jsp, and the that.jsp page can print

the values of the bean’s properties using <jsp:getProperty/>.
d The bean instance will be available in that.jsp, and the that.jsp page can print

the values of the bean’s properties using <jsp:getProperty /> only if that.jsp
also contains a <jsp:useBean/> declaration identical to the one in this.jsp and
before using <jsp:getProperty/>.

Answer: c

Explanation

The that.jsp page is included using a directive. Thus, it is a static inclusion,
and the two pages form a single translation unit.

CHAPTER 15—USING CUSTOM TAGS

1. Which of the following elements are required for a valid <taglib> element in
web.xml? (Select two)
a uri
REVIEW Q & A 455

b taglib-uri

Licensed to Tricia Fu <tricia.fu@gmail.com>

c tagliburi

d tag-uri

e location

f taglib-location

g tag-location

h tagliblocation

Answers: b and f

Explanation

The <taglib> element is defined as follows:

 <!ELEMENT taglib (taglib-uri, taglib-location)>

As you can see, both taglib-uri and taglib-location are required elements.

2. Which of the following web.xml snippets correctly defines the use of a tag
library? (Select one)
a <taglib>

 <uri>http://www.abc.com/sample.tld</uri>
 <location>/WEB-INF/sample.tld</location>
 </taglib>

b <tag-lib>
 <taglib-uri>http://www.abc.com/sample.tld</taglib-uri>
 <taglib-location>/WEB-INF/sample.tld</taglib-location>
 </tag-lib>

c <taglib>
 <taglib-uri>http://www.abc.com/sample.tld</taglib-uri>
 <taglib-location>/WEB-INF/sample.tld</taglib-location>
 </taglib>

d <tag-lib>
 <taglib>http://www.abc.com/sample.tld</taglib-uri>
 <taglib>/WEB-INF/sample.tld</taglib-location>
 </tag-lib>

Answer: c

Explanation

The use of a tag library is defined using the <taglib> element:

 <!ELEMENT taglib (taglib-uri, taglib-location)>

3. Which of the following is a valid taglib directive? (Select one)
a <% taglib uri="/stats" prefix="stats" %>

b <%@ taglib uri="/stats" prefix="stats" %>

c <%! taglib uri="/stats" prefix="stats" %>

d <%@ taglib name="/stats" prefix="stats" %>

e <%@ taglib name="/stats" value="stats" %>

Answer: b
456 APPENDIX C REVIEW Q & A

Licensed to Tricia Fu <tricia.fu@gmail.com>

Explanation

A directive starts with <%@, so answers a and c are invalid. A taglib directive
requires uri and prefix attributes, so only answer b is correct.

4. Which of the following is a valid taglib directive? (Select one)
a <%@ taglib prefix="java" uri="sunlib"%>

b <%@ taglib prefix="jspx" uri="sunlib"%>

c <%@ taglib prefix="jsp" uri="sunlib"%>

d <%@ taglib prefix="servlet" uri="sunlib"%>

e <%@ taglib prefix="sunw" uri="sunlib"%>

f <%@ taglib prefix="suned" uri="sunlib"%>

Answer: f

Explanation

The JSP specification does not allow us to use the names jspx, java, javax,
servlet, sun, and sunw as a value for the prefix attribute. Therefore, only
answer f is valid.

5. Consider the following <taglib> element, which appears in a deployment
descriptor of a web application:

 <taglib>
 <taglib-uri>/accounting</taglib-uri>
 <taglib-location>/WEB-INF/tlds/SmartAccount.tld</taglib-location>
 </taglib>

Which of the following correctly specifies the use of the above tag library in a JSP
page? (Select one)
a <%@ taglib uri="/accounting" prefix="acc"%>

b <%@ taglib uri="/acc" prefix="/accounting"%>

c <%@ taglib name="/accounting" prefix="acc"%>

d <%@ taglib library="/accounting" prefix="acc"%>

e <%@ taglib name="/acc" prefix="/accounting"%>

Answer: a

Explanation

The taglib directive contains two attributes, uri and prefix:

• uri: The value of the uri attribute in a JSP page must be the same as the value
of the <taglib-uri> subelement of the <taglib> element in web.xml. If
the entries in web.xml are not used, then the value of the uri attribute in a JSP
page can directly point to the TLD file using a root-relative URI, as in uri="/
WEB-INF/tlds/SmartAccount.tld".

• prefix: This can be any string allowed by the XML naming specification. It is
similar to an alias and is used in the rest of the page to refer to this tag library.
REVIEW Q & A 457

Licensed to Tricia Fu <tricia.fu@gmail.com>

6. You are given a tag library that has a tag named printReport. This tag may
accept an attribute, department, which cannot take a dynamic value. Which of
the following are correct uses of this tag? (Select two)
a <mylib:printReport/>

b <mylib:printReport department="finance"/>

c <mylib:printReport attribute="department" value="finance"/>

d <mylib:printReport attribute="department"

 attribute-value="finance"/>

e <mylib:printReport>
 <jsp:attribute name="department" value="finance" />
 </mylib:printReport>

Answers: a and b

Explanation

Answer a is correct because the department attribute is not required. Answer b is
syntactically correct, but the rest of the answers are syntactically wrong.

7. You are given a tag library that has a tag named getMenu, which requires an
attribute, subject. This attribute can take a dynamic value. Which of the fol-
lowing are correct uses of this tag? (Select two)
a <mylib:getMenu />

b <mylib:getMenu subject="finance"/>

c <% String subject="HR";%>
 <mylib:getMenu subject="<%=subject%>"/>

d <mylib:getMenu> <jsp:param subject="finance"/> </mylib:getMenu>

e <mylib:getMenu>
 <jsp:param name="subject" value="finance"/>
 </mylib:getMenu>

Answers: b and c

Explanation

Answer a is wrong because subject is a required attribute (as the question
states). Answer b is correct because a static value can be specified for an attribute
that takes a dynamic value (but the reverse is not true). Answer c is correct
because the subject attribute takes a dynamic value. Answers d and e do not
make sense.

8. Which of the following is a correct way to nest one custom tag inside another?
(Select one)
a <greet:hello>

 <greet:world>
 </greet:hello>
 </greet:world>

b <greet:hello>
 <greet:world>
 </greet:world>
458 APPENDIX C REVIEW Q & A

 </greet:hello>

Licensed to Tricia Fu <tricia.fu@gmail.com>

c <greet:hello
 <greet:world/>
 />

d <greet:hello>
 </greet:hello>
 <greet:world>
 </greet:world>

Answer: b

Explanation

The inner tag should exist completely within the outer tag; therefore, answer a is
not valid. We cannot use a tag as an attribute to another tag. Thus, answer c is
incorrect. Answer d does not have any kind of nesting at all.

9. Which of the following elements can you use to import a tag library in a JSP doc-
ument? (Select one)
a <jsp:root>

b <jsp:taglib>

c <jsp:directive.taglib>

d <jsp:taglib.directive>

e We cannot use custom tag libraries in XML format.

Answer: a

Explanation

In the XML syntax, the tag library information is included in the <jsp:root>
element:

 <jsp:root
 xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:test="sampleLib.tld"
 version="1.2" >

 ...JSP PAGE...

 </jsp:root>

10. Using c to represent the JSTL library, which of the following produces the same
result as <%= var %>? (Select one)
a <c:set value=var>

b <c:var out=${var}>

c <c:out value=${var}>

d <c:out var="var">

e <c:expr value=var>

Answer: c

Explanation

JSTL provides the out tag to display a value in the JSP. Therefore, answers a, b,
and e are incorrect. If the value corresponds to a variable, then the variable must
REVIEW Q & A 459

be enclosed in ${…}. Answer d is incorrect, and c is the correct choice.

Licensed to Tricia Fu <tricia.fu@gmail.com>

11. Which attribute of <c:if> specifies the conditional expression? (Select one)
a cond

b value

c check

d expr

e test

Answer: e

Explanation

The <c:if> tag contains only one attribute, and this attribute represents the
conditional expression that will be evaluated. This expression must be enclosed
with single quotes, and it must be set equal to the test attribute. Answers a
through d are incorrect, and e is the correct choice.

12. Which of the following JSTL forEach tags is valid?
a <c:forEach varName="count" begin="1" end="10" step="1">

b <c:forEach var="count" begin="1" end="10" step="1">

c <c:forEach test="count" beg="1" end="10" step="1">

d <c:forEach varName="count" val="1" end="10" inc="1">

e <c:forEach var="count" start="1" end="10" step="1">

Answer: b

Explanation

The JSTL forEach tag works like the for statement in Java. One major differ-
ence is the loop variable, which has to be var. Therefore, answers a, c, and d are
incorrect. When executed, var starts at the begin value, and proceeds to the end
value in increments of step. Therefore, e is incorrect and b is the correct value.

13. Which tags can be found in a JSTL choose? (Select two)
a case

b select

c check

d when

e otherwise

Answers: d and e

Explanation

The JSTL choose tag works like the switch…case structure in Java. However,
each option is represented by when, and the default option is given by other-
wise. Therefore, answers d and e are correct.

CHAPTER 16—DEVELOPING CLASSIC CUSTOM TAG LIBRARIES

1. Which of the following is not a valid subelement of the <attribute> element in
a TLD? (Select one)
460 APPENDIX C REVIEW Q & A

a <name>

b <class>

Licensed to Tricia Fu <tricia.fu@gmail.com>

c <required>

d <type>

Answer: b

Explanation

The valid subelements of the <attribute> element are as shown below:

 <!ELEMENT attribute (name, required? , rtexprvalue?,
 type?, description?) >

Thus, the correct answer is b. <class> is not a valid subelement of the
<attribute> element in a TLD.

2. What is the name of the tag library descriptor element that declares that an
attribute can have a request-time expression as its value?
a [__________________]

Answer: rtexprvalue

Explanation

The <rtexprvalue> element specifies whether or not an attribute can take a
request-time expression as its value. Its value can be either true or false. By
default, it is false.

3. Consider the following code in a JSP page:

 <% String message = "Hello "; %>

 <test:world>
 How are you?
 <% message = message + "World! " %>
 </test:world>

 <%= message %>

If doStartTag() returns EVAL_BODY_BUFFERED and doAfterBody() clears
the buffer by calling bodyContent.clearBody(), what will be the output of
the above code? (Select one)
a Hello

b Hello How are you?

c Hello How are you? World!

d Hello World!

e How are you World!

Answer: d

Explanation

If doStartTag() returns EVAL_BODY_BUFFERED, then the body is executed
and the output is buffered. The text How are you? is inserted into the current
JspWriter buffer and the scriptlet <% message = message + "World! " %>
REVIEW Q & A 461

assigns the value Hello World! to the message String. However, the scriptlet

Licensed to Tricia Fu <tricia.fu@gmail.com>

only assigns the new value; it does not print the value using the out variable.
Therefore, only the text How are you? goes into the buffer. The doAfter-
Body() method discards the body contents by calling bodycontent.clear-
Body(). So, the actual output of the JSP page does not contain the text. After the
tag is over, the expression <%=message%> prints the value of the String mes-
sage, which now contains the text Hello World!. Thus, the correct answer is d,
Hello World!.

4. Which of the following interfaces are required at a minimum to create a simple
custom tag with a body? (Select one)
a Tag

b Tag and IterationTag
c Tag, IterationTag, and BodyTag
d TagSupport

e BodyTagSupport

Answer: a

Explanation

The Tag interface is all you need to create a simple custom tag with a body. You
do not have to implement the BodyTag interface in order to specify a body for a
tag. The BodyTag interface is required only when the evaluation of the tag body
needs to be buffered. Answers d and e are classes and not interfaces.

5. At a minimum, which of the following interfaces are required to create an itera-
tive custom tag? (Select one)
a Tag

b Tag and IterationTag
c Tag, IterationTag, and BodyTag
d TagSupport

e BodyTagSupport

Answer: b

Explanation

To create an iterative tag, we need to implement IterationTag. Iteration-
Tag extends Tag. Hence, the correct answer is b.

6. Which of the following methods is never called for handler classes that imple-
ment only the Tag interface? (Select one)
a setParent()

b doStartTag()

c doAfterbody()

d doEndTag()

Answer: c
462 APPENDIX C REVIEW Q & A

Licensed to Tricia Fu <tricia.fu@gmail.com>

Explanation

The doAfterBody() method is defined in IterationTag. The other three
methods are defined in the Tag interface. Thus, the correct answer is c; doAfter-
Body() is never called on a tag that implements only the Tag interface.

7. Which of the following is a valid return value for doAfterBody()? (Select one)
a EVAL_BODY_INCLUDE

b SKIP_BODY

c EVAL_PAGE

d SKIP_PAGE

Answer: b

Explanation

The constant in answer a, EVAL_BODY_INCLUDE, is valid only for the doStart-
Tag() method. The constants in answers c, EVAL_PAGE, and d, SKIP_PAGE, are
valid only for the doEndTag() method.

The method doAfterBody() can return the following three values:

• EVAL_BODY_AGAIN, to reevaluate the body
• EVAL_BODY_BUFFERED, to reevaluate the body (only if the tag implements
BodyTag)

• SKIP_BODY, to skip the body

Thus, the correct answer is b, SKIP_BODY.

8. Which element would you use in a TLD to indicate the type of body a custom tag
expects?
a [__________________]

Answer: <body-content>

Explanation

The <body-content> element is a subelement of the <tag> element in a TLD
that indicates the type of body a custom tag expects. The valid values are empty,
JSP, and tagdependent. JSP is the default value if <body-content> is not
specified.

9. If the doStartTag() method returns EVAL_BODY_INCLUDE one time and the
doAfterBody() method returns EVAL_BODY_AGAIN five times, how many
times will the setBodyContent() method be called? (Select one)
a Zero
b One
c Two
d Five
e Six

Answer: a
REVIEW Q & A 463

Licensed to Tricia Fu <tricia.fu@gmail.com>

Explanation

If the doStartTag() method returns EVAL_BODY_INCLUDE, then the evalua-
tion of the body is not buffered. Thus, setBodyContent() is never called. The
correct answer is a, zero times.

10. If the doStartTag() method returns EVAL_BODY_BUFFERED one time and the
doAfterBody() method returns EVAL_BODY_BUFFERED five times, how many
times will the setBodyContent() method be called? Assume that the body of
the tag is not empty. (Select one)
a Zero
b One
c Two
d Five
e Six

Answer: b

Explanation

If the doStartTag() method returns EVAL_BODY_BUFFERED, then the evalua-
tion of the body is buffered. But setBodyContent() is called only once—
before the first time the body is evaluated. This happens only after the doStart-
Tag() method returns EVAL_BODY_BUFFERED. It is not called after every call to
doAfterBody() regardless of the return value of doAfterBody(). The correct
answer is b, one time.

11. How is the SKIP_PAGE constant used? (Select one)
a doStartTag() can return it to skip the evaluation until the end of the current page.
b doAfterBody() can return it to skip the evaluation until the end of the

current page.
c doEndTag() can return it to skip the evaluation until the end of the current page.
d It is passed as a parameter to doEndTag() as an indication to skip the evaluation

until the end of the current page.

Answer: c

Explanation

The SKIP_PAGE constant is defined in the Tag interface as a return value for the
doEndTag() method. It indicates that evaluation of the page from the end of the
current tag until the end of the current page must be skipped. The correct answer is c.

12. Which of the following can you use to achieve the same functionality as provided
by findAncestorWithClass()? (Select one)
a getParent()

b getParentWithClass()

c getAncestor()

d getAncestorWithClass()

e findAncestor()
464 APPENDIX C REVIEW Q & A

Answer: a

Licensed to Tricia Fu <tricia.fu@gmail.com>

Explanation

findAncestorWithClass(Tag currentTag, Class klass) is a convenient
way to get a reference to an outer tag that is closest to the specified Class object.
This can also be achieved by calling getParent() on the current tag to get its
immediate parent and then again calling getParent() on the returned refer-
ence, working our way up the nested hierarchy until we find the tag with the
desired Class object. Thus, the correct answer is a, getParent(). The methods
shown in all the other answers are not valid methods of any interface.

13. Consider the following code in a tag handler class that extends TagSupport:

 public int doStartTag()
 {
 //1
 }

Which of the following can you use at //1 to get an attribute from the applica-
tion scope? (Select one)
a getServletContext().getAttribute("name");

b getApplication().getAttribute("name");

c pageContext.getAttribute("name",PageContext.APPLICATION_SCOPE);

d bodyContent.getApplicationAttribute("name");

Answer: c

Explanation

The only implicit object made available to tag handler classes by the engine is
PageContext via the setPageContext() method. To access all other implicit
objects and user-defined objects in other scopes, we must save the reference to
pageContext passed in as a parameter to the setPageContext() method and
use the saved object in other methods. The TagSupport class implements set-
PageContext() and maintains this reference in a protected member named
pageContext. We can use this member in the methods of the classes that extend
TagSupport. Thus, the correct answer is c, pageContext.getAttribute
("name",PageContext.APPLICATION_SCOPE);.

14. Which types of objects can be returned by PageContext.getOut()? (Select
two)
a An object of type ServletOutputStream
b An object of type HttpServletOutputStream
c An object of type JspWriter
d An object of type HttpJspWriter
e An object of type BodyContent

Answers: c and e

Explanation

The return type of pageContext.getOut() is JspWriter. If the exam asks
REVIEW Q & A 465

you to select only one correct option, select JspWriter. However, BodyContent

Licensed to Tricia Fu <tricia.fu@gmail.com>

extends JspWriter, and the return value of the pageContext.getOut() is an
object of type BodyContent if doStartTag() returns EVAL_BODY_BUFFERED.
Thus, if the exam asks you to select two correct options, then select Body-
Content as well.

15. We can use the directive <%@ page buffer="8kb" %> to specify the size of the
buffer when returning EVAL_BODY_BUFFERED from doStartTag().
a True
b False

Answer: b

Explanation

The page directive attribute buffer specifies the size of the buffer to be main-
tained by the actual output stream that is meant for the whole page. It has noth-
ing to do with the buffer maintained by BodyContent, which is meant for a
particular tag when the doStartTag() method returns EVAL_BODY_BUFFERED.
The buffer size of a BodyContent object is unlimited. Therefore, the correct
answer is b, false.

CHAPTER 17—DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

1. What method should you use in a SimpleTag tag handler to access dyna-
mic variables?
a doTag()

b setDynamicAttribute()

c getParent()

d getDynamicAttribute()

Answer: b

Explanation

Dynamic attributes are one of the important advantages of the new standard. These
allow you to add process variables beyond those explicitly described in the TLD. To
use them, you need to set the <dynamic-attributes> element to true in the
TLD, and add the method setDynamicAttribute() to the Java class.

2. Which object does a SimpleTag tag handler use to access implicit variables?
a PageContext

b BodyContent

c JspContext

d SimpleTagSupport

Answer: c

Explanation

The PageContext and BodyContent classes are only available for classic tags, so
466 APPENDIX C REVIEW Q & A

answers a and b are incorrect. Simple tag handlers extend SimpleTagSupport,

Licensed to Tricia Fu <tricia.fu@gmail.com>

but this doesn’t provide a means of accessing implicit variables. Answer d is incor-
rect. Instead, a tag handler needs a JspContext object, and answer c is correct.

3. Consider the following TLD excerpt:
<body-content>
 empty
</body-content>
<attribute>

 <name>color</name>
 <rtexprvalue>true</rtexprvalue>
</attribute>
<dynamic-attributes>
 true
</dynamic-attributes>

If the name of the tag is tagname and its prefix is pre, which of the following JSP
statements is valid?
a <pre:tagname color="yellow" size=${sizenum} />

b <pre:tagname size="18" color="red"> </pre:tagname>

c <pre:tagname color="${colorname}" size="22" font="verdana"></
pre:tagname>

d <pre:tagname color="green" size="30">font="Times New Roman"</
pre:tagname>

e <pre:tagname color="${colorname}" size="18"></pre>

Answer: c

Explanation

Answer e is incorrect because the concluding tag isn’t </pre:tagname>. Answer
d is incorrect because its body content contradicts the <body-content> element
of the TLD. The <dynamic-attributes> element is set to true, so JSP state-
ments can incorporate variables beyond those mentioned in the TLD. If there are
static and dynamic values in a tag, the static values need to come first, so answer b
is incorrect. Also, EL can only be used in static variables, so a is incorrect. Because
answer c doesn’t make any of these errors, it is the correct choice.

4. If placed inside the body of a custom tag, which of the following statements won’t
produce “9”? (Select one)
a ${3 + 3 + 3}

b "9"

c <c:out value="9">

d <%= 27/3 %>

Answer: d

Explanation

You can never include scripts (declarations, expressions, or scriptlets) within the
body content of simple tags. Because answer d contains an expression, it won’t
REVIEW Q & A 467

produce “9” and is the correct answer.

Licensed to Tricia Fu <tricia.fu@gmail.com>

5. Which of the following methods need to be invoked in a SimpleTag to provide
iterative processing? (Select one)
a setDynamicAttribute()

b getParent()

c getJspBody()

d doTag()

e getJspContext()

Answer: d

Explanation

In classic tag handlers, you need many different methods for many different capa-
bilities. But with simple tags, you just need doTag(). This takes care of body
processing and iteration. The correct answer is d.

6. Which of the following values is invalid inside a SimpleTag’s <bodycontent>
subelement? (Select one)
a JSP

b scriptless

c tagdependent

d empty

Answer: a

Explanation

The <bodycontent> element in a SimpleTag TLD is the same as for the classic
model, with one exception. Since you can’t incorporate scripts in SimpleTags,
the JSP value is invalid. Therefore, a is the correct answer.

7. Which of the following is a valid return value for the SimpleTag’s doTag()
method? (Select one)
a EVAL_BODY_INCLUDE

b SKIP_BODY

c void

d EVAL_PAGE

e SKIP_PAGE

Answer: c

Explanation

Unlike the methods used in classical tag handlers, the doTag() method doesn’t
return values to control tag processing. Since the rest of the values are only used
for classic tags, the correct answer is c.

8. Which tag file directive makes it possible to process dynamic attributes?
a taglib

b page

c tag

d attribute
468 APPENDIX C REVIEW Q & A

Answer: c

Licensed to Tricia Fu <tricia.fu@gmail.com>

Explanation

Like the <attribute> element in TLDs, the attribute directive in tag files
can only declare static variables. To add dynamic attributes to a tag file, you need
to use the tag directive. Then, within this directive, you can add the dynamic-
attributes attribute. The correct answer is c.

9. Which of the following statements can’t be used to access a tag file from a JSP?
(Select one)
a <%@ taglib prefix="pre" uri="www.mysite.com/dir/" %>

b <%@ taglib prefix="pre" tagdir="/WEB-INF/tags" %>

c <%@ taglib prefix="pre" tagdir="/WEB-INF/tagfiles" %>

d <%@ taglib prefix="pre" tagdir="/WEB-INF/tags/myDirectory" %>

Answer: c

Explanation

When using tag files in a JSP, you can specify their location with the uri or
tagdir attribute. But the files must be located in /WEB-INF/tags or a subdirec-
tory. Since /WEB-INF/tagfiles is neither, c is the correct answer.

10. Which tag file action processes JspFragments in tag attributes?
a taglib

b jsp:invoke

c tag

d jsp:doBody

e attribute

Answer: b

Explanation

Answers a, c, and e contain tag file directives, and therefore are incorrect. The two
new actions used in tag files are jsp:doBody and jsp:invoke. The first pro-
cesses body content and the second processes attributes that have been declared as
JspFragments. Therefore, b is the correct answer.

11. Which JspFragment method is used to process body content in a SimpleTag?
(Select one)
a invoke()

b getOut()

c getJspContext()

d getBodyContent()

Answer: a

Explanation

The getBodyContent() method processes body content in classic tags, but not
in the simple tag model, so answer d is incorrect. The getJspContext() method
returns a JspContext object, and getJspContext().getOut() returns a Jsp-
REVIEW Q & A 469

Writer, but neither processes body content. Therefore, answers b and c are

Licensed to Tricia Fu <tricia.fu@gmail.com>

incorrect. The only method in the simple tag model that processes body content
is invoke(), which processes the body content obtained through the getJsp-
Body() method; thus a is correct.

12. Which class provides an implementation of the doTag() method? (Select one)
a TagSupport

b BodyTagSupport

c SimpleTagSupport

d IterationTagSupport

e JspTagSupport

Answer: c

Explanation

TagSupport, BodyTagSupport, and IterationTagSupport are implementa-
tion classes in the classic tag model, and answers a, b, and d are incorrect. At
present, there is no JspTagSupport class, so e is incorrect. The primary imple-
mentation class in the simple tag model is SimpleTagSupport, which provides
an implementation of doTag(). Therefore, c is the correct answer.

13. In what directory shouldn’t you place tag files? (Select one)
a /META-INF/tags/tagfiles

b /WEB-INF/

c /WEB-INF/tags/tagfiles/tagdir/taglocation

d /META-INF/tags/

Answer: b

Explanation

When tag files are incorporated into a web application (/WEB-INF/) or a web
archive (/META-INF/), the tag files must be placed in a tags folder under these
directories or a subfolder beneath. Therefore, answers a, c, and d are incorrect.
Because answer b involves placing tag files directly under /WEB-INF/, it is correct.

14. Which type of object is returned by JspContext.getOut()? (Select one)
a ServletOutputStream

b HttpServletOutputStream

c JspWriter

d BodyContent

Answer: c

Explanation

Body content is returned by the getJspBody() method, so answer d is incor-
rect. Both ServletOutputStreams and HttpServletOutputStreams are
acquired with getOutputStream(), so answers a and b are incorrect. The Jsp-
Context.getOut() method returns a JspWriter, so answer c is correct. This
object can be used to display data within the JSP.
470 APPENDIX C REVIEW Q & A

Licensed to Tricia Fu <tricia.fu@gmail.com>

15. Which of the following methods does the web container call first to initiate a
SimpleTag’s life cycle?
a setJspContext()

b setParent()

c getJspContext()

d getJspBody ()

e getParent()

Answer: c

Explanation

To enable the Java class to access scoped and implicit variables, the web container
starts the SimpleTag life cycle with setJspContext(). Therefore, a is the cor-
rect answer. You can access these variables with getJspContext(). After the
context is set, the web container calls setParent() and setJspBody() to con-
tinue the life cycle processing.

CHAPTER 18—DESIGN PATTERNS

1. What are the benefits of using the Transfer Object pattern? (Select two)
a The type of the actual data source can be specified at deployment time.
b The data clients are independent of the data source vendor API.
c It increases the performance of data-accessing routines.
d It allows the clients to access the data source through EJBs.
e It allows resource locking in an efficient way.

Answers: a and b

Explanation

This pattern is used to decouple business logic from data access logic. It hides the
data access mechanism from the business objects so that the data source can be
changed easily and transparently to the business objects.

2. Which design pattern allows you to decouple the business logic, data representa-
tion, and data presentation? (Select one)
a Model-View-Controller
b Transfer Object
c Bimodal Data Access
d Business Delegate

Answer: a

Explanation

In the Model-View-Controller pattern, Model is the data representation, View is
the data presentation, and Controller is the implementation of business logic.
Therefore, a is the correct answer.

3. Which of the following are the benefits of using the Transfer Object design pat-
tern? (Select two)
REVIEW Q & A 471

a It improves the response time for data access.
b It improves the efficiency of object operations.

Licensed to Tricia Fu <tricia.fu@gmail.com>

c It reduces the network traffic.
d It reduces the coupling between the data access module and the database.

Answers: a and c

Explanation

The Transfer Object pattern allows you to retrieve all the data elements in one
remote call instead of making multiple remote calls; therefore, it reduces the net-
work traffic and improves the response time since the subsequent calls to the
object are local.

4. Which of the following statements are correct? (Select two)
a The Transfer Object pattern ensures that the data is not stale at the time of use.
b It is wise to make the Transfer Object immutable if the Transfer Object represents

read-only data.
c Applying the Transfer Object pattern on EJBs helps to reduce the load on enterprise

beans.
d A Transfer Object exists only on the server side.

Answers: b and c

Explanation

Answer a is wrong because just the reverse is true. For instance, this pattern is not
used when the attributes of an EJB are volatile, such as stock quotes. Answer b is
correct because making the Transfer Object immutable reinforces the idea that
the Transfer Object is not a remote object and any changes to its state will not be
reflected on the server. Answer c is correct because clients require a fewer number
of remote calls to retrieve attributes. Answer d is wrong because a Transfer Object
is created on the server and sent to the client.

5. What are the benefits of using the Business Delegate pattern? (Select three)
a It implements the business service functionality locally to improve performance.
b It shields the clients from the details of the access mechanism, such as CORBA or

RMI, of the business services.
c It shields the clients from changes in the implementation of the business services.
d It provides the clients with a uniform interface to the business services.
e It reduces the number of remote calls and reduces network overhead.

Answers: b, c, and d

Explanation

Answer a is wrong because a Business Delegate does not implement any business
service itself. It calls remote methods on the business services on behalf of the pre-
sentation layer. Answer b is correct because the clients delegate the task of calling
remote business service methods to the Business Delegate. Thus, they are shielded
by the Business Delegate from the access mechanism of the business services.
Answer c is correct because the Business Delegate is meant for shielding the cli-
ents from the implementation of the business services. Answer d is also correct
472 APPENDIX C REVIEW Q & A

because this is one of the goals of this pattern. Answer e is not correct because the

Licensed to Tricia Fu <tricia.fu@gmail.com>

Business Delegate does not reduce the number of remote calls. It calls the remote
methods on behalf of the client components.

6. You are designing an application that is required to display the data to users
through HTML interfaces. It also has to feed the same data to other systems
through XML as well as WAP interfaces. Which design pattern would be appro-
priate in this situation? (Select one)
a Interface Factory
b Session Facade
c Transfer Object
d Model-View-Controller
e Factory

Answer: d

Explanation

The application requires multiple views (HTML, XML, and WAP) for the same
data; therefore, MVC is the correct answer.

7. You are automating a computer parts ordering business. For this purpose, your
web application requires a controller component that would receive the requests
and dispatch them to appropriate JSP pages. It would also coordinate the request
processing among the JSP pages, thereby managing the workflow. Finally, the
behavior of the controller component is to be loaded at runtime as needed.
Which design pattern would be appropriate in this situation? (Select one)

a Front Controller
b Session Facade
c Transfer Object
d Model-View-Controller
e Data Access Object

Answer: a

Explanation

This is a standard situation for the Front Controller pattern. The Front Control-
ler receives all the requests and dispatches them to the appropriate JSP pages. This
is not the MVC pattern, because the question only asks about controlling the
workflow. You would choose the MVC pattern if it asked about controlling and
presenting the data in multiple views.

8. You are building the server side of an application and you are finalizing the inter-
faces that you will provide to the presentation layer. However, you have not yet
finalized the access details of the business services. Which design pattern should
you use to mitigate this concern? (Select one)

a Model-View-Controller
b Data Access Object
REVIEW Q & A 473

c Business Delegate

Licensed to Tricia Fu <tricia.fu@gmail.com>

d Facade
e Transfer Object

Answer: c

Explanation

You already know the services that you have to provide, but the implementation
of the service access mechanism for the services has not yet been decided. The
Business Delegate pattern gives you the flexibility to implement the access mecha-
nism any way you want. The presentation-tier components—servlets and JSP
pages—can use the interface provided by the Business Delegate object to access
the business services. Later, when the decision about access mechanism changes,
only the Business Delegate object needs to be modified. Other components will
remain unaffected.
474 APPENDIX C REVIEW Q & A

Licensed to Tricia Fu <tricia.fu@gmail.com>

A P P E N D I X D

Exam Quick Prep
This appendix provides a quick recap of all the important concepts that are covered in
the exam objectives. It also notes important points regarding the concepts, which may
help you answer the questions correctly during the exam. You should go through this
appendix a day before you take the exam.

We have grouped the information according to the exam objectives given by Sun.
Therefore, the numbering of the objectives corresponds to the numbering given to the
objectives on Sun’s web site. The objectives are listed with the chapters in which they
are discussed. However, since the first three chapters of this book do not correspond
to any exam objectives, the objectives start with chapter 4.
475

Licensed to Tricia Fu <tricia.fu@gmail.com>

CHAPTER 4—THE SERVLET MODEL

Objectives 1.1–1.4, 3.5

1.1 For each of the HTTP Methods (such as GET, POST, HEAD, and so on) describe the
purpose of the method and the technical characteristics of the HTTP Method protocol, list
triggers that might cause a Client (usually a Web browser) to use the method; and identify
the HttpServlet method that corresponds to the HTTP Method.

1.2 Using the HttpServletRequest interface, write code to
• Retrieve HTML form parameters from the request
• Retrieve HTTP request header information, or
• Retrieve cookies from the request

Important concepts Exam tips

✧ For HTTP method XXX, HttpServlet’s
doXXX(HttpServletRequest,
HttpServletResponse) is called.

Servlet container calls the service(ServletRe
quest, ServletResponse) method of the Serv-
let interface.

✧ For example, for GET, HttpServlet’s doGet() is
called.

HttpServlet.service(HttpServletRequest,
Http ServletResponse) interprets the
HTTP request and calls the appropriate
doXXX() method.

✧ Triggers for GET request:
• Clicking on a hyperlink
• Browsing through the browser’s address field

The default method of the HTML FORM ele-
ment is GET.

✧ Triggers for POST request:
• Submitting an HTML FORM, only if its

method attribute is POST

Parameters sent via GET are visible in the
URL. Parameters sent via POST are not visi-
ble in the URL, and so it is used to send data
such as the user ID/password.

✧ Triggers for HEAD request:
• Clicking a menu option that makes the

browser synchronize offline content with the
web site

GET supports only text data.
POST supports text as well as binary data.
The HTTP protocol does not limit the length
of the query string, but many browsers and
HTTP servers limit it to 255 characters.
POST is used to send large amounts
of data.

Important concepts Exam tips

✧ HTML FORM parameters or parameters embed-
ded in query string can be retrieved using:
• String ServletRequest.getParameter(String

paramName)
• String[] ServletRequest.getParameter Val-

ues(String param)

ServletConfig allows you to get Init parame-
ters. You cannot set anything into it.
sendRedirect is not transparent to the
browser.
476 APPENDIX D EXAM QUICK PREP

continued on next page

Licensed to Tricia Fu <tricia.fu@gmail.com>

1.3 Using the HttpServletResponse interface, write code to
• Set an HTTP response header
• Set the content type of the response
• Acquire a text stream for the response
• Acquire a binary stream for the response
• Redirect an HTTP request to another URL, or
• Add cookies to the response

✧ HTTP request headers can be retrieved using:
• String HttpServletRequest.getH-

eader(String headerName)
• Enumeration HttpServletRequest.get Head-

erValues(String headerName)

✧ Cookies can be retrieved from a request using:
• Cookie[] HttpServletRequest.getCookies()

Important concepts

✧ HTTP response headers can be set using:
HttpServletResponse.setHeader(String headerName, String value)
HttpServletResponse.addHeader(String headerName,String value)

✧ Content-Type for HTTP response can be set using:
ServletResponse.setContentType(String value)

✧ To acquire a text stream to send character data to the response, use:
PrintWriter ServletResponse.getWriter()

✧ To acquire a binary stream to send any data to the response, use:
ServletOutputStream ServletResponse.get OutputStream()

✧ To redirect an HTTP request to another URL, use:
HttpServletResponse.sendRedirect(String newURL)

✧ Cookies can be added to the response using:
void HttpServletResponse.addCookie(Cookie cookie)

Important concepts Exam tips
EXAM QUICK PREP 477

Licensed to Tricia Fu <tricia.fu@gmail.com>

1.4 Describe the purpose and event sequence of the servlet life cycle:
• Servlet class loading
• Servlet instantiation
• Call the init method
• Call the service method
• Call the destroy method

3.5 Describe the RequestDispatcher mechanism;
• Write servlet code to create a request dispatcher;
• Write servlet code to forward or include the target resource; and
• Identify and describe the additional request-scoped attributes provided by the container

to the target resource.

 Important concepts Exam tips

✧ To start, the web container looks for the deployment
descriptor (web.xml) to determine which servlet class is
needed. Then, it loads the servlet class from the local or
remote filesystem.

✧ After loading the class, the web container creates an
object based on the class. This is the servlet instantiation.

✧ init(ServletConfig): Guaranteed to be called once and only
once on a Servlet object by the servlet container before
putting the servlet into service.

The init() method is called once per
servlet object. You can have multiple
instantiations of the same servlet class.

✧ service(ServletRequest, ServletResponse): Called by the
servlet container for each request

✧ destroy(): Called by the servlet container after it takes the
servlet out of service. It is called only once. But it may not
be called if the servlet container crashes.

 Important concepts Exam tips

✧ The RequestDispatcher interface provides the
following methods to forward the request to
another servlet or to include the partial
response generated by another servlet:
• RequestDispatcher.forward(ServletRe-

quest, ServletResponse)
• RequestDispatcher.include(ServletRequest,

ServletResponse)

RequestDispatcher.forward() is transparent to
the browser, unlike HttpServletResponse.send
Redirect().

The path string passed to ServletContext.get
RequestDispatcher() must start with /.

ServletRequest.getRequestDispatcher sup-
ports relative paths while ServletCon-
text.getRequest Dispatcher does not.

✧ ServletRequest and ServletContext provide the
following method to get a Request Dispatcher:
• getRequestDispatcher(String path)

✧ Additionally, ServletContext provides the follow-
ing method:
• getNamedDispatcher(String servletName)
478 APPENDIX D EXAM QUICK PREP

continued on next page

Licensed to Tricia Fu <tricia.fu@gmail.com>

✧ An included servlet can obtain information about
the request with the following attributes:
• javax.servlet.include.request_uri
• javax.servlet.include.context_path
• javax.servlet.include.servlet_path
• javax.servlet.include.path_info
• javax.servlet.include.query_string

These attributes cannot be set if the Request-
Dispatcher was acquired with getNamed-
Dispatcher(String servletName).

✧ A forwarded servlet can obtain information
about the request with the following attributes:
• javax.servlet.forward.request_uri
• javax.servlet.forward.context_path
• javax.servlet.forward.servlet_path
• javax.servlet.forward.path_info
• javax.servlet.forward.query_string

These attributes cannot be set if the Request-
Dispatcher was acquired with getNamed-
Dispatcher(String servletName).

 Important concepts Exam tips
EXAM QUICK PREP 479

Licensed to Tricia Fu <tricia.fu@gmail.com>

CHAPTER 5—STRUCTURE AND DEPLOYMENT

Objectives 2.1–2.4

2.1 Construct the file and directory structure of a Web Application that may contain
• Static content
• JSP pages
• Servlet classes
• The deployment descriptor
• Tag libraries
• JAR files, and
• Java class files; and
• Describe how to protect resource files from HTTP access

2.2 Describe the purpose and semantics of the deployment descriptor.

Important concepts Exam tips

✧ Directory structure of a web application:
 webappname
 |-all html, JSP, static files
 |-WEB-INF
 |-web.xml (deployment descriptor)
 |-classes
 |-servlet classes
 |-Java classes
 |-lib
 |-JAR files
 |-tag libraries

The name of the deployment descriptor file is
web.xml, and it should be in the WEB-INF
directory.

Class files should be in the WEB-INF/classes
directory.

JAR files should be in the WEB-INF/lib directory.

You can protect resource files from HTTP
access by placing them in the WEB-INF
folder. No file in this directory can be directly
accessed by a client.

Important concepts Exam tips

✧ The deployment descriptor (web.xml) pro-
vides information to the web container con-
cerning the application’s characteristics–its
servlets, JSPs, static content, etc. It also
specifies where each file can be found.

The web.xml file is written using XML tags, and
each pair of tags encloses a specific aspect of the
application.
480 APPENDIX D EXAM QUICK PREP

Licensed to Tricia Fu <tricia.fu@gmail.com>

2.3 Construct the correct structure of the deployment descriptor.

Important concepts Exam tips

✧ A servlet container creates a servlet instance
for each <servlet> element.

The <servlet-name> element is used to give
a name to a servlet.

The <servlet-class> element specifies the
fully qualified Java class name for the servlet.

Each <init-param> element specifies an ini-
tialization parameter.

Each <servlet-mapping> element specifies a
URI to the servlet mapping.

✧ Sample Servlet definition:
<servlet>
 <servlet-name>
 TestServlet
 </servlet-name>
 <servlet-class>
 com.abc.TestServlet
 </servlet-class>
 <init-param>
 <param-name>region</param-name>
 <param-value>USA</param-value>
 </init-param>
</servlet>

✧ Sample URL-to-Servlet mapping:
<servlet-mapping>
 <servlet-name>
 ColorServlet
 </servlet-name>
 <url-pattern>*.col</url-pattern>
 </servlet-mapping>

You can define two servlets using the same serv-
let class but different servlet names to provide
multiple sets of initialization parameters.
EXAM QUICK PREP 481

Licensed to Tricia Fu <tricia.fu@gmail.com>

2.4 Explain the purpose of a WAR file, describe the contents of a WAR file, and describe how
one may be constructed.

Important concepts Exam tips

✧ A WAR (Web ARchive) file is an archived web
application. At the time of deployment, the
name of the web application is assumed to be
the name of the WAR file.

The WAR directory structure is given by:
 webappname.war
 |-all html, JSP, static files
 |-META-INF
 |-MANIFEST.MF
 |-WEB-INF
 |-web.xml (deployment descriptor)
 |-classes
 |-servlet classes
 |-Java classes
 |-lib
 |-JAR files
 |-tag libraries

Archiving is performed with regular Java archive
(jar) tools. From the top-level application direc-
tory, you can create the archive with:
jar cvf webappname.war

The main difference between a WAR directory
and a regular web application is the presence of
META-INF, which holds information for the
archive utility.
482 APPENDIX D EXAM QUICK PREP

Licensed to Tricia Fu <tricia.fu@gmail.com>

CHAPTER 6—THE SERVLET CONTAINER MODEL

Objectives 3.1–3.2, 3.4

3.1 For the ServletContext initialization parameters
• Write servlet code to access initialization parameters; and
• Create the deployment descriptor elements for declaring initialization parameters.

3.2 For the fundamental servlet attribute scopes (request, session, and context):
• Write servlet code to add, retrieve, and remove attributes;
• Given a usage scenario, identify the proper scope for an attribute; and
• Identify multi-threading issues associated with each scope.

Important concepts Exam tips

✧ ServletContext init parameters can be
retrieved using ServletContext.getInitParame-
ter(String).

The following is a web.xml code snippet
showing ServletContext init parameters and
a listener configuration:
<web-app>
 …
 <context-param>
 <param-name>locale</param-name>
 <param-value>US</param-value>
 </context-param>
 …
</web-app>

javax.servlet.GenericServlet implements the
ServletConfig interface.

Important concepts Exam tips

✧ For the request, session, and context scopes,
attributes are manipulated with the same four
methods:
• Object getAttribute(String name)
• Enumeration getAttributeNames()
• void setAttribute(String name, Object

value)
• void removeAttribute(String name)

An attribute name can have only one value.

✧ There is one ServletContext for each web
application on each JVM. However, Servlet-
Context for the default web application exists
on only one JVM.

HttpSession exists on only one JVM at a time
but may be migrated across the JVMs.

HttpSession attributes should implement the
java.io.Serializable interface; otherwise,
setAttribute() may throw an IllegalArgument-

ServletContext init parameters are available on all
the JVMs.

ServletContext attributes are not visible across
the JVMs.

ServletContextEvent, ServletContextAttribute
Event, and HttpSessionAttributeEvent may not
be propagated across the JVMs. Therefore, a dis-
tributable web application should not depend on
the notification of changes to the attribute list of
EXAM QUICK PREP 483

Exception. either ServletContext or HttpSession.

Licensed to Tricia Fu <tricia.fu@gmail.com>

3.4 Describe the Web container life cycle event model for requests, sessions, and
web applications;
• Create and configure listener classes for each scope life cycle;
• Create and configure scope attribute listener classes; and
• Given a usage scenario, identify the proper attribute listener to use.

Listener interface Methods

javax.servlet.ServletContextListener
• Configured in the deployment descriptor.
• Used to listen for creation and destruction of

the servlet context.
• Should not depend on this in a distributed

environment.

void contextDestroyed(ServletContextEvent sce)
Called when the servlet context is about to
be destroyed.

void contextInitialized(ServletContextEvent sce)
Called when the web application is ready
to process requests.

javax.servlet.ServletContextAttributeListener
• Configured in the deployment descriptor.
• Used to listen for changes in the attribute list

of the servlet context.
• Should not depend on this in a distributed

environment.

void attributeAdded(ServletContextAttributeEvent
scae) Called when a new attribute is added to the
servlet context.

void attributeRemoved(ServletContextAttribute-
Event scae) Called when an attribute is removed
from the servlet context.

void attributeReplaced(ServletContext
AttributeEvent scae) Called when an attribute on
the servlet contextis replaced.

javax.servlet.http.HttpSessionListener
• Configured in the deployment descriptor.
• Used to listen for changes in the list of ses-

sions of a web application.
• Should not depend on this in a distributed

environment. For example, if a session is
created on one machine, this may not trig
ger a call to sessionCreated() on another
machine.

void sessionCreated(HttpSessionEvent se) Called
when a session is created.

void sessionDestroyed(HttpSessionEvent se)
Called when a session is invalidated.

javax.servlet.http.HttpSessionAttributeListener
• Configured in the deployment descriptor.
• Used to listen for changes in the attribute list

of sessions of a web application.
• Should not depend on this in a distributed

environment because the HttpSession
AttributeListener instances will be present
on all the JVMs but the session will be
present on only one JVM. Thus, the
HttpSessionBindingEvents will be delivered
only to the listener instance that is present
on the session’s JVM.

void attributeAdded(HttpSessionBindingEvent se)
Called when an attribute is added to a session.

void attributeRemoved(HttpSessionBindingEvent
se) Called when an attribute is removed from a
session.

void attributeReplaced(HttpSessionBindingEvent
se) Called when an attribute is replaced in a ses-
sion.

continued on next page
484 APPENDIX D EXAM QUICK PREP

Licensed to Tricia Fu <tricia.fu@gmail.com>

javax.servlet.http.HttpSessionBindingListener
• Not configured in the deployment

descriptor.
• An attribute should implement this interface

if it wants to be notified when it is added or
removed from a session.

• Can depend on this in a distributed environ-
ment, since a session resides ononly one
machine at a time.

void valueBound(HttpSessionBindingEvent event)
Called on the object when it is being bound to a
session.

void valueUnbound(HttpSessionBindingEvent
event) Called on the object when it is being
unbound from a session.

javax.servlet.http.HttpSessionActivation-
Listener
• Not configured in the deployment

descriptor.
• An attribute should implement this interface

if it wants to be notified when the session is
migrated.

• Can depend on this in a distributed environ-
ment, because a session resides on only
one machine at a time.

void sessionDidActivate(HttpSessionEvent se)
Called on all the attributes that implement this
interface after the session is activated.

void sessionWillPassivate(HttpSessionEvent se)
Called on all the attributes that implement this
interface just before the session is passivated.

javax.servlet.http.ServletRequestAttribute-
Listener
• Must be configured in the deployment

descriptor.
• An attribute should implement this interface

if it wants to be notified when the request’s
attribute’s change.

Listener interface Methods
EXAM QUICK PREP 485

Licensed to Tricia Fu <tricia.fu@gmail.com>

CHAPTER 7—USING FILTERS

Objective 3.3

3.3 Describe the Web container request processing model;
• Write and configure a filter;
• Create a request or response wrapper; and
• Given a design problem, describe how to apply a filter or a wrapper.

Important concepts

✧ All filters implement the javax.servlet.Filter interface.
javax.servlet.FilterConfig provides initialization parameters to a filter through:
• getInitParameter(String name)
• getInitParameterNames()

✧ FilterConfig also contains a reference to the ServletContext object, which can be
retrieved through the getServletContext() method.
Filter life-cycle methods:
• init(FilterConfig): Called by the container during application startup.
• doFilter(ServletRequest, ServletResponse): Called by the container for each

request whose URL is mapped to this filter.
• destroy(): Called by the container during application shutdown.

✧ The following is a sample filter declaration:
 <filter>
 <filter-name>ValidatorFilter</filter-name>
 <description>Validates the requests
 </description>
 <filter-class>
 com.abc.filters.ValidatorFilter
 </filter-class>
 <init-param>
 <param-name>locale</param-name>
 <param-value>USA</param-value>
 </init-param>
 </filter>

✧ The following is a sample filter mapping that associates ValidatorFilter with a *.doc
URL pattern:
 <filter-mapping>
 <filter-name>ValidatorFilter</filter-name>
 <url-pattern>*.doc</url-pattern>
 </filter-mapping>

✧ The following is a sample filter mapping that associatesValidatorFilter
with TestServlet:
 <filter-mapping>
 <filter-name>ValidatorFilter</filter-name>
 <servlet-name>TestServlet</servlet-name>
 </filter-mapping>
486 APPENDIX D EXAM QUICK PREP

continued on next page

Licensed to Tricia Fu <tricia.fu@gmail.com>

✧ The javax.servlet package defines the ServletRequestWrapper and ServletRespon-
seWrapper classes.

✧ The javax.servlet.http package defines the HttpServletRequestWrapper and
HttpServletResponseWrapper classes.

✧ All four classes delegate the method calls to the underlying request or
response object.

Important concepts
EXAM QUICK PREP 487

Licensed to Tricia Fu <tricia.fu@gmail.com>

CHAPTER 8—SESSION MANAGEMENT

Objectives 4.1–4.4

4.1 Write servlet code to store objects into a session object and retrieve objects from
a session object.

4.2 Given a scenario
• Describe the APIs used to access the session object,
• Explain when the session object was created, and
• Describe the mechanisms used to destroy the session object, and when it was destroyed.

Important concepts

✧ Methods to get and store attributes from and to HttpSession:
• Object getAttribute(String name);
• void setAttribute(String name, Object value)

Important concepts Exam tips

✧ Methods to access a session while processing a
user request:
• request.getSession(boolean createFlag)
• request.getSession(): This is the same as

request.getSession(true)

If the argument is set to true, an HttpSession
object will be created if it does not already
exist.

✧ Three ways to monitor session creation and
usage:
• Cookies
• URL rewriting
• SSL information

With cookies, the server sends the session ID
to the client. Each user request also contains
this cookie, so the server can track the ses-
sion.

✧ Three ways to terminate a session:
• HttpSession.invalidate()
• Set a time-out period using HttpSession.set-

MaxInactiveInterval(int)
• Set a time-out period in web.xml:

<web-app>
 …
 <session-config>
 <session-timeout>30</session-timeout>
 </session-config>
 …
</web-app>

✧ A session is invalidated if no request comes from
the client for session-timeout minutes or if ses-
sion.invalidate() is called.

Session timeout is specified in minutes. A
value of 0 or less means the sessions will
never expire (unless explicitly expunged using
session.invalidate()).

Session timeout for a particular session can
be changed using HttpSession.setMax-
InactiveInter val(int seconds). This method
takes the interval in number of seconds
(unlike the deployment descriptor, which
takes minutes). It does not affect other ses-
sions. Any negative value prevents the ses-
sion from being timed out.
488 APPENDIX D EXAM QUICK PREP

Licensed to Tricia Fu <tricia.fu@gmail.com>

4.3 Using session listeners,
• Write code to respond to an event when an object is added to a session, and
• Write code to respond to an event when a session object migrates from one VM

to another.

4.4 Given a scenario,
• Describe which session management mechanism the Web container could employ,
• How cookies might be used to manage sessions,
• How URL rewriting might be used to manage sessions, and
• Write servlet code to perform URL rewriting.

Important concepts Exam tips

✧ HttpSessionBindingListener is used by objects to
receive notifications when they are added to or
removed from a session. It has two methods:
• void valueBound(HttpSessionBindingEvent e)
• void valueUnound(HttpSessionBindingEvent e)

HttpSessionBindingListener is not config-
ured in the deployment descriptor and is
implemented by classes, objects of which
are to be stored in a session.

HttpSessionBindingEvent extends
HttpSession Event and adds methods:

String getName()
Object getValue()

HttpSessionEvent has only one method:
HttpSession getSession()

✧ HttpSessionActivationListener is used to receive
notifications when any session migrates from one
VM to another:
• void sessionWillPassivate(HttpSessionEvent e)
• void sessionDidActivate(HttpSessionEvent e)

Important concepts Exam tips

✧ With cookies, the server sends the session ID
with each response. Each user request also
contains this ID, so the server can track the
session.

The name of the cookie must be JSESSIONID
(uppercase).

✧ To use URL rewriting, all the URLs displayed
by the application must have the session ID
attached.

✧ HttpServletResponse.encodeURL(String url)
appends the session ID to the URL only if it is
required.

✧ HttpServletResponse.encodeRedirect
URL(String url) should be used to rewrite
URLs that are to be passed to the
response.sendRedirect() method.

None of the static HTML pages that contain
URLs can be served directly to the client. They
must be parsed in a servlet and the session ID
must be attached to the URLs.
EXAM QUICK PREP 489

Licensed to Tricia Fu <tricia.fu@gmail.com>

CHAPTER 9—DEVELOPING SECURE WEB APPLICATIONS

Objectives 5.1–5.3

5.1 Based on the servlet specification, compare and contrast the following security
mechanisms:
• Authentication
• Authorization
• Data integrity
• Confidentiality

5.2 In the deployment descriptor, declare
• A security constraint,
• A Web resource,
• The transport guarantee,
• The login confirmation, and
• A security role.

Important concepts

✧ Authentication: Verifying that the user is who he claims to be. Performed by asking for the
username and password.

✧ Authorization: Verifying that the user has the right to access the requested resource. Performed
by checking with an access control list.

✧ Data integrity: Verifying that the data is not modified in transit. Performed
using cryptography.

✧ Confidentiality: Making sure that unintended parties cannot make use of the data. Performed
using encryption.

Important concepts Exam tips

✧ Three things are used to define a security con-
straint:
1. web-resource-collection (at least one is

required)
2. auth-constraint (optional)
3. user-data-constraint (optional)

Values for transport-guarantee:

NONE implies HTTP

CONFIDENTIAL, INTEGRAL imply HTTPS

Values for auth-method: BASIC, FORM,
DIGEST, and CLIENT-CERT.

continued on next page
490 APPENDIX D EXAM QUICK PREP

Licensed to Tricia Fu <tricia.fu@gmail.com>

✧ Sample security constraint:
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>declarativetest
 </web-resource-name>
 <url-pattern>/servlet/SecureServlet
 </url-pattern>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>supervisor</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>NONE
 </transport-guarantee>
 </user-data-constraint>
 </security-constraint>

The <web-resource-collection> tags refer to
the resources that are protected by the secu-
rity constraints. Each collection is named by
the <web-resource-name> tags.

The web resource is represented by a <url-
pattern> that can be accessed with a spe-
cific <http-method>. These methods corre-
spond to the HTTP methods discussed
earlier: GET, POST, etc.

The <transport-guarantee> tags specify the
protection of the communication layer
NONE implies no protection (HTTP)
INTEGRAL implies error-free data (HTTPS)
CONFIDENTIAL implies protection against
eavesdropping (HTTPS)

✧ Login config is used to authenticate the users.
Sample login configuration:
 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/formlogin.html
 </form-login-page>
 <form-error-page>/formerror.html
 </form-error-page>
 </form-login-config>
 </login-config>

Values for auth-method: BASIC, FORM,
DIGEST, and CLIENT-CERT.

✧ Sample security role:
 <security-role>
 <role-name>supervisor</role-name>
 </security-role>

✧ Programmatic security requires role names that
are hard-coded in the servlet to be specified in the
security-role-ref element. An example:
 <servlet>
 <servlet-name>SecureServlet</servlet-name>
 <servlet-class>cgscwcd.chapter9.SecureServlet
 </servlet-class>
 <security-role-ref>
 <role-name>manager</role-name>
 <role-link>supervisor</role-link>
 </security-role-ref>
 </servlet>
In this example, manager will be hard-coded in
the servlet while supervisor is the actual role
name in the deployment environment.

Important concepts Exam tips
EXAM QUICK PREP 491

Licensed to Tricia Fu <tricia.fu@gmail.com>

5.3 Compare and contrast the authentication types (BASIC, DIGEST, FORM,
and CLIENT-CERT); describe how the type works; and given a scenario, select an
appropriate type.

Important concepts

✧ BASIC: Performed by sending the username and password in Base64 encoding.
Advantages:
• Very easy to set up
• Supported by all browsers
Disadvantages:
• It is not secure, since the username and password are not encrypted.
• You cannot customize the look and feel of the dialog box.

✧ DIGEST: Performed by sending a digest of the password in an encrypted form.
Advantages:
• Secure
Disadvantages:
• Not supported by all browsers

✧ FORM: Performed by sending username and password in Base64 encoding. The username and
password are captured using a customized HTML FORM.
Advantages:
• Easy to set up
• Supported by all browsers
• Customized look and feel
Disadvantages:
• It is not secure, since the username and password are not encrypted unless HTTPS is used.

✧ CLIENT-CERT:
Advantages:
• Very secure
• Supported by all browsers
Disadvantages:
• Costly to implement
492 APPENDIX D EXAM QUICK PREP

Licensed to Tricia Fu <tricia.fu@gmail.com>

CHAPTER 10—THE JSP TECHNOLOGY MODEL—THE BASICS

Objectives 6.1, 6.2, 6.4

6.1 Identify, describe, or write the JSP code for the following elements:
• Template text
• Scripting elements (comments, directives, declarations, scriptlets, and expressions)
• Standard and custom actions, and
• Expression language elements.

Important concepts Exam tips

✧ Template text contains strings that remain unin-
terpreted and are sent directly to the JspWriter
for display.

Tag names, their attributes, and their values
are case sensitive.

Unknown attributes or invalid values result in
errors and are caught during the translation
phase.

Page directives can be placed anywhere in a
page but apply to the entire translation unit.

Variable declarations end with a semicolon;
methods do not.

Expressions must not end with a semicolon.

<%! String name="SCWCD"; %> is an
instance variable declared outside
_jspService().

<% String name="SCWCD"; %> is a local
variable declared inside _jspService().

✧ Comments block out sections of text in the page.
They are coded with two dashes: --
 <%-- This won’t be processed --%>

✧ Directives specify translation time instructions to
the JSP engine. They are coded with @
 <%@ page attribute list %>
 <%@ include file="relativeURL" %>
 <%@ taglib prefix="" uri="" %>

✧ Declarations declare and define methods and vari-
ables. They are coded with !
 <%! int count; %>
 <%!
 int getCount()
 {
 return count;
 }
 %>

✧ Scriptlets are used for writing free-form Java
code. They have no special coding character.
 <%
 //some Java code
 %>

✧ Expressions serve as shortcuts to print values in
the generated page. They are coded with =
 <%= request.getParameter("paramName") %>

Standard actions are covered in Chapter 11 and
Expression Language elements are covered in
Chapter 13.
EXAM QUICK PREP 493

Licensed to Tricia Fu <tricia.fu@gmail.com>

6.2 Write JSP code that uses the directives:
• ‘page’ (with attributes ‘import’, ‘session’, ‘contentType’, and ‘isELIgnored’)
• ‘include’, and
• ‘taglib’.

Important concepts Exam tips

✧ The page directive specifies parameters that apply to
the entire JSP. It has four attributes:
• ‘import’ identifies a package that should be

imported to the JSP-translated servlet
 <%@ page import=”java.io.*” %>

• ‘session’ tells the web container that the JSP is
part of a session and will need to access the
HttpSession object
 <%@ page session=”true” %>

By default, the web container assumes
that the ‘session’ attribute is set to true.

• ‘contentType’ identifies the MIME type of the
JSP-translated servlet
 <%@ page contentType=”MIME type;
 charset=value” %>

This is similar to the setContentType()
method of the response

• ‘isELIgnored’ specifies whether the JSP will
include Expression Language elements
 <%@ page isELIgnored=”false” %>

In JSPs following the 1.2 standard, the
default is ‘true.’ In JSPs following the 2.0
standard, the default is ‘false.’

✧ The include directive adds files to the servlet pro-
cessing during translation.
 <%@ include file=”filename.suf” %>

✧ The taglib directive identifies a tag library (*.tld) con-
taining tags that will be used in the JSP. The library-s
location is specified by the uri attribute, and the tag
prefix is identified by the prefix attribute.
 <%@ taglib prefix=”pre” uri=”/WEB-INF/lib.tld %>
494 APPENDIX D EXAM QUICK PREP

Licensed to Tricia Fu <tricia.fu@gmail.com>

6.4 Describe the purpose and event sequence of the JSP page life cycle:
• JSP page translation
• JSP page compilation
• Load class
• Create instance
• Call the jspinit method
• Call the _jspService method
• Call the _jspDestroy method

Important concepts Exam tips

✧ The life-cycle phases occur in the
following order:

1. Page translation

2. Page compilation

3. Load class

4. Create instance

5. Call jspInit()

6. Call _jspService()

7. Call jspDestroy()

jspInit() and jspDestroy() are defined in the
javax.servlet.jsp.JspPage interface.

_jspService() is defined in the javax.serv-
let.jsp.HttpJspPageinterface.

jspInit() and jspDestroy() are called only once.

_jspService() is called multiple times, once for
every request for this page.

JSP declarations are used to declare jspInit()
and jpsDesctoy().

We never declare _jspService() explicitly. The JSP
engine automatically declares it.

The return type of all the three methods is void.

jspInit() and jspDestroy() take no arguments.

jspInit() and jspDestroy() do not throw
any exceptions.

_jspService() takes two arguments:
HttpServletRequest
HttpServletResponse

_jspService() throws two exceptions:
ServletException
IOException
EXAM QUICK PREP 495

Licensed to Tricia Fu <tricia.fu@gmail.com>

CHAPTER 11—THE JSP TECHNOLOGY MODEL—ADVANCED TOPICS

Objectives 6.3, 6.5

6.3 Write a JSP document (XML-based document) that uses the correct syntax.

6.5 Given a design goal, write JSP code using the appropriate implicit objects: request,
response, out, session, config, application, page, pageContext, and exception.

Important concepts Exam tips

✧ XML syntax for directives:
 <jsp:directive.page attribute list />
 <jsp:directive.include file="relativeURL" />

✧ XML syntax for declarations:
 <jsp:declaration>
 int count;
 </jsp:declaration>
 <jsp:declaration>
 int getCount(){
 return count;
 }
 </jsp:declaration>

✧ XML syntax for scriptlets:
 <jsp:scriptlet>
 //some Java code
 </jsp: scriptlet>

✧ XML syntax for expressions:
 <jsp:expression>
 request.getParameter("paramName")
 </jsp:expression>

The rules for tag names, attributes, and values
are the same in XML and JSP formats.

The semantics of placement of the tags are the
same in XML and JSP formats.

All XML-based pages should have a root tag
named <jsp:root>. Thus, the page ends with
</jsp:root>.

There is no taglib directive in XML. Taglibs are
specified in <jsp:root>.

Implicit object Purpose, Function, or Uses

request Object of type javax.servlet.http.HttpServletRequest. Passed in as a parameter
to _jspService(). Used for getting HTTP header information, cookies, parame-
ters, etc.
Also used for getting and setting attributes into the request scope.

response Object of type javax.servlet.http.HttpServletResponse. Passed in as a parame-
ter to _jspService(). Used to send a response to the client. Used for setting
HTTP header information, cookies, etc.

out Object of type javax.servlet.jsp.JspWriter; used for writing data to
the output stream.

session Object of type javax.servlet.http.HttpSession. Used for storing and retrieving
session related information and sharing objects across multiple requests and
pages within the same HTTP session.

config Object of type javax.servlet.ServletConfig. Used to retrieve initialization parame-
ters for a JSP page.
496 APPENDIX D EXAM QUICK PREP

continued on next page

Licensed to Tricia Fu <tricia.fu@gmail.com>

application Object of type javax.servlet.ServletContext. Used for storing and retrieving
application related information and sharing objects across multiple sessions,
requests, and pages within the same web application.

page Refers to the generated Servlet class. Not used much because it is declared as
of type java.lang.Object.

pageContext Object of type javax.servlet.jsp.PageContext. Used for storing and retrieving
page-related information and sharing objects within the same translation unit
and same request. Also used as a convenience class that maintains a table of all
the other implicit objects.

exception Object of type java.lang.Throwable. Only available in pages that have the page
directive isErrorPage set to true.

Implicit object Purpose, Function, or Uses
EXAM QUICK PREP 497

Licensed to Tricia Fu <tricia.fu@gmail.com>

CHAPTER 12—REUSABLE WEB COMPONENTS

Objective 6.7, 8.2

6.7 Given a specific design goal for including a JSP segment in another page, write the JSP
code that uses the most appropriate inclusion mechanism (the include directive or the
jsp:include standard action).

8.2 Given a design goal, create a code snippet using the following standard actions:
• jsp:include,
• jsp:forward, and
• jsp:param

Important concepts Exam tips

✧ To include a component statically, use the
include directive:
 <%@ include file="relativeURL" %>

Points to remember for the include directive:
• There is only one attribute: file.
• The file attribute is mandatory.
• The file attribute’s value is a relative path. We

cannot specify a protocol, hostname, or port
number.

• The attribute cannot point to a servlet.

✧ To include a component dynamically, use the
include action:
 <jsp:include page="relativeURL"
 flush="true" />

Points to remember for <jsp:include>:
• There are two attributes: page and flush.
• The page attribute is mandatory.
• The flush attribute is optional. The default

value of flush is false.
• The name of the attribute is page, not url or

file.
• The value of the page attribute is a relative

path. We cannot specify a protocol, host-
name, or port number.

• Even though the name of the attribute is page,
it can point to a servlet.

• You can also include an HTML file dynamically.

✧ To forward a request to another component
dynamically, use the forward action:
 <jsp:forward page="relativeURL" />

Points to remember for <jsp:forward>:
• There is only one attribute: page. There is no

flush attribute in <jsp:forward>.
• The name of the attribute is page and not url.
• The attribute’s value is a relative path. We can-

not specify a protocol, hostname, or port num-
ber.

• Even though the name of the attribute is page,
the value can point to a servlet.

• You can also forward to an HTML file dynami-
cally.
498 APPENDIX D EXAM QUICK PREP

Licensed to Tricia Fu <tricia.fu@gmail.com>

Include Directive vs. Include Action

<jsp:include> vs. <jsp:forward>

Include directive Include action

Syntax <%@ include
 file='relativeURL'%>
The attribute name is file and not page.

<jsp:include
 page='relativeURL'
 flush='true|false' />
The attribute name is page and not file.

relativeURL It can point to any file; JSP, HTML, text,
XML, etc. However:
• It cannot point to a servlet.
• It cannot be a request-time expression.

It can point to any file; JSP, HTML,
text, XML, etc. Also:
• It can point to a servlet.
• It can be a request-time expression.
 <%= expr %>

Parameters The including JSP file cannot pass new
parameters to the included JSP files. The
following is not valid:
<%@ include
 file='other.jsp?abc=123'%>

However, the included files can access
the original parameters available in the
request to the including JSP file.

The including JSP page can pass new
parameters to the included JSP pages
and servlets using <jsp:param> as
<jsp:include page='other.jsp' >
 <jsp:param name='abc'
 value='123' />
</jsp:include>
The included pages can also access
the original parameters present in the
request to the including JSP page.

Inclusion Inclusion is static.

Inclusion of the included file happens at
translation time.

Inclusion is dynamic.

Inclusion of the output of the included
component happens each time the
including page is requested.

Translation
Unit

The including page and the included pages
become a part of a single translation unit.

The page directives in any of the compo-
nents including or included JSP pages
affect the entire translation unit.

The including page and the including
pages do not become a part of a single
translation unit.

The page directives in the including
page do not affect the included com-
ponents, and vice versa.

If included
file changes

The changes are not reflected unless all
the including pages are re-translated.

The changes are reflected automati
cally each time the pages are
requested.

Uses Files that do not change very often are
included using directives.

Examples include copyright information
and navigational bars.

Components that do change often are
included using actions.

Examples include news headlines and
advertisement bars.

<jsp:include> <jsp:forward>

Syntax <jsp:include
 page='relativeURL'
 flush='true|false' />

<jsp:forward
 page='relativeURL' />
EXAM QUICK PREP 499

Licensed to Tricia Fu <tricia.fu@gmail.com>

CHAPTER 13—CREATING JSPS WITH THE EXPRESSION LANGUAGE (EL)

Objectives 7.1–7.3

7.1 Given a scenario, write EL code that accesses the following implicit variables:
• pageScope, requestScope, sessionScope, and applicationScope
• param and paramValues, header and headerValues
• cookie, initParam and pageContext

Implicit objects Purpose, Function, or Uses

pageScope, request-
Scope, sessionScope,
and applicationScope

Returns a Map relating scope attributes and their values.
For example, ${sessionScope.attrname} evaluates to the attrname attribute
of the session scope.

param and paramVal-
ues

Returns a Map containing a named request parameter (param) or a set of
parameters (paramValues). Similar to getParameter(String) and getParame-
terValues(String[]).
For example, ${param.paramname} evaluates to the request parameter
named paramname.

header and headerVal-
ues

Returns a Map containing a named header element (header) or a set of
header elements (headerValues).
For example, ${header.accept} returns the ‘accept’ field of the incoming
header.

cookie Returns a Map containing all of the cookies in a single object. Same as get-
Cookies() method.
For example, ${cookie.cname} returns the cookie named cname.

initParam Returns a Map relating the context’s initial parameter names and their val-
ues.
For example, ${initParam.iname} returns the value of the initial parameter
named iname.

pageContext Object of type java.util.Map. Used for storing and retrieving page-related
information and sharing objects within the same translation unit and same
request. Also used as a convenience class that maintains a table of all the
other implicit objects.
For example, ${pageContext.out.bufferSize} returns the size of the Jsp-
Writer’s buffer.
500 APPENDIX D EXAM QUICK PREP

Licensed to Tricia Fu <tricia.fu@gmail.com>

7.2 Given a scenario, write EL code that uses the following operators:
• property access (the . operator) and collection access (the [] operator)
• arithmetic operators, relational operators, and logical operators

Important concepts Exam tips

✧ The property access operator (.) allows you to access properties
of a variable.
For example, {$a.b} evaluates to the property of a with the
identifier, b.
If b is an array, you can access its nth element with {$a.b[n]}

Don’t use quotes with property
access operators.

✧ The collection access operator ([]) allows you to access proper-
ties of a Map, List, or Array.
For example, {$a.[b]} evaluates to the value of a associated
with the key or index, b.
If b is an array, you can access its nth element with {$a.b[n]}

If the key is a string, you should
surround its name with single or
double quotes.

✧ EL’s arithmetic operators are similar to those used in regular
Java:
 Addition: +
 Subtraction: -
 Multiplication: *
 Division: / and div
 Modular division: * and mod
For example,
 ${6 + 4} evaluates to 10
 ${26/2} evaluates to 13
 ${34 mod 5} evaluates to 4
 ${-20.0/5} evaluates to -4.0

Can use floating point numbers
and number in exponential nota-
tion (e.g. 1e10)

✧ EL’s relational operators are also similar to those used in regular
Java:
 Equality: ‘==’ and ‘eq’
 Non-equality: ‘!=’ and ‘ne’
 Less than: ‘<’ or ‘lt’
 Greater than: ‘>’ or ‘gt’
 Less than or equal: ‘<=’ or ‘le’
 Greater than: ‘>=’ or ‘ge’
For example,
 ${3 > 2} evaluates to true
 ${4 >= 8} evaluates to false

✧ EL’s logical operators are like those used in regular Java:
 Conjunction: ‘&&’ and ‘and’
 Disjunction: ‘||’ and ‘or’
 Inversion: ‘!’ and ‘not’
For example,
 ${(5 > 3) && (6 mod 2 == 0)} evaluates to true
 ${(6 + 7 == 13) || (2 div 3 == 1)} evaluates to true
 ${(5 > 3) && !(3 div 4 == 2)} evaluates to true
 ${(2 >= 10) || (18 mod 3 == 2)} evaluates to false
EXAM QUICK PREP 501

Licensed to Tricia Fu <tricia.fu@gmail.com>

7.3 Given a scenario, write EL code that uses a function;

• write code for an EL function; and
• configure the EL function in a tag library descriptor.

Important concepts

✧ Coding an EL function means creating a public Java class containing a public static
method. This method must return a value that can be evaluated inside a JSP. The
class must be stored in the /WEB-INF/classes directory.
For example,
public Example
{
 public static String upper(String x)
 {
 return x.toUpperCase();
 }
}

✧ To tell the JSP how to find and access the function, you must update a tag library
descriptor (*.tld). This declares the function corresponding to the Java method. It
requires <function> tags that enclose <function-class> and <function-signature>
subelements.
For example,
<taglib…>
…
 <function>
 <name>Upper</name>
 <function-class>Example</function-class>
 <function-signature>
 java.lang.String Upper(java.lang.String)
 </function-signature>
 </function>
…
</taglib>

✧ To access the function from within the JSP, you must insert a taglib directive that
matches the tag library descriptor to a prefix.
For example,
<%@ taglib prefix=”up” uri=”http://example.com/taglib” %>
Then, you could use the function, Upper, as
${up:Upper(stringvar)}

continued on next page
502 APPENDIX D EXAM QUICK PREP

Licensed to Tricia Fu <tricia.fu@gmail.com>

✧ To match the TLD to the URI, you need to update the deployment descriptor:
<taglib>
 <taglib-uri>
 http://example.com/taglib
 </taglib-uri>
 <taglib-location>
 /WEB-INF/example.tld
 </taglib-location>
</taglib>

Important concepts
EXAM QUICK PREP 503

Licensed to Tricia Fu <tricia.fu@gmail.com>

CHAPTER 14—USING JAVABEANS

Objective 8.1

8.1 Given a design goal, create a code snippet using the following standard actions:
• jsp:useBean (with attributes: ‘id’, ‘scope’, ‘type’, and ‘class’),
• jsp:getProperty, and
• jsp:setProperty (with all attribute combinations).

Important concepts Exam tips

✧ To declare a JavaBean component, use the <jsp:use-
Bean> action:

 <jsp:useBean attribute-list />

Valid attributes: id, scope, class, type, and bean-
Name.

The attribute id is mandatory, while scope is optional.
At least one of the following combinations of class,
type, and bean Name must be present: class, type,
class and type, bean Name and type.

The body of the <jsp:useBean> action can be used
to initialize its properties. Example:
<jsp:useBean id="address" scope="session"
 class="AddressBean" >
 <jsp:setProperty name="address"
 property="street" value="123 Main" />
</jsp:useBean>

The default value of the scope attribute is
page.

The beanName attribute can also be a
JSP expression.

beanName can be used to instantiate a
class or a serialized object whereas class
is only for a class.

class uses the new keyword to instanti-
ate a class and beanName uses
java.beans.Beans.instantiate().

Using beanName and class together is
illegal.

continued on next page
504 APPENDIX D EXAM QUICK PREP

Licensed to Tricia Fu <tricia.fu@gmail.com>

✧ To set a bean’s property, use <jsp:setProperty>:
 <jsp:setProperty name="address" property="city"
 value="Albany" />
Valid attributes: name, property, param, and value.

The attributes name and property are mandatory,
while others are optional. The name attribute must
refer to a bean that is already declared using a use-
Bean action.
Examples:
<jsp:setProperty name="aName" property="*" />:
Sets all the properties for which there is a matching
parameter in the request.
<jsp:setProperty name="aName" property="aProp" /> :
Sets aProp using the parameter of the same name in
the request.
<jsp:setProperty name="aName" property="aProp"
param="aParam"/>:
Sets aProp using the parameter named aParam in
the request.
<jsp:setProperty name="aName" property="aProp"
 value="aValue"/>:
Sets aProp to the value aValue.
<jsp:setProperty name="aName" property="aProp"
 value="<%= JSPExpression %>"/>:
Sets aProp to the value returned by the expression.

Using param and value together is illegal.

✧ To access a JavaBean property, use
<jsp:getProperty>.
Valid attributes: name and property.
Both are mandatory.

<jsp:getProperty> prints out the value.

continued on next page

Important concepts Exam tips
EXAM QUICK PREP 505

Licensed to Tricia Fu <tricia.fu@gmail.com>

Once the use of a JavaBean is declared using a <jsp:use-
Bean> action, a variable by the given name is automati-
cally declared in the servlet code. Therefore, besides the
setProperty and getProperty actions, the bean can also
be accessed through this variable in the scripting ele-
ments.
Example:
 <jsp:useBean id="user"
 class="UserBean"
 scope="session" />

 <%
 //The bean is used in a scriptlet here.
 //You can call methods on the object
 //referred to by the user variable.
 user.initialize();
 out.println(user.getName());
 %>

Important concepts Exam tips
506 APPENDIX D EXAM QUICK PREP

Licensed to Tricia Fu <tricia.fu@gmail.com>

CHAPTER 15—USING CUSTOM TAGS

Objectives 6.6, 9.1–9.3

6.6 Configure the deployment descriptor to declare one or more tag libraries, deactivate the
evaluation language, and deactivate the scripting language

Important concepts Exam tips

✧ The deployment descriptor (web.xml) can
declare the presence of tag libraries for the
web application.
The format of this declaration is
<taglib>
 <taglib-uri>
 www.uri.com/library
 </taglib-uri>
 <taglib-location>
 /WEB-INF/libs/library.tld
 </taglib-location>
</taglib>

This subject is treated in greater depth in chap-
ters 13, 16, and 17

In this case, the URI is matched to the tag library
(library.tld) at the specified location.

This URI can be used in JSPs throughout the
application. For example,

<%@ taglib prefix=”lib” uri=”www.uri.com/
library” %>

will direct the web container to the location of
the tag library desriptor, library.tld.

✧ To de-activate the Expression Language, you
need to create <jsp-property-group> elements
with <url-pattern> and <el-ignored> subele-
ments.
For example,
<jsp-property-group>
 <url-pattern>*.jsp</url-pattern>
 <el-ignored>true</el-ignored>
</jsp-property-group >
will de-activate EL in every JSP in the
application.

✧ De-activating scripting is similar, except you
need <scripting-invalid> sub-elements.
<jsp-property-group>
 <url-pattern>*.jsp</url-pattern>
 <scripting-invalid>true</scripting-invalid>
</jsp-property-group>
EXAM QUICK PREP 507

Licensed to Tricia Fu <tricia.fu@gmail.com>

9.1 For a custom tag library or a library of Tag Files, create the ‘taglib’ directive for a
JSP page.

Important concepts Exam tips

✧ Before creating a ‘taglib’ directive in a JSP, it is rec-
ommended to create a URI in the deployment
descriptor.
This is given by:
<web-app>
<!--…other stuff -->
<taglib>
 <taglib-uri>
 http://www.manning.com/sampleLib
 </taglib-uri>
 <taglib-location>
 /WEB-INF/sampleLib.tld
 </taglib-location>
</taglib>
<!--…other stuff -->
</web-app>

Remember the following points:
• Each taglib element maps one URI to

one location.
• Understand the syntax of <taglib> thor-

oughly. There is no hyphen in <taglib>,
but there is a hyphen in <taglib-uri>
and <taglib-location>.

• The value of <taglib-uri> can be an
absolute URI, a root-relative URI, or a
non-root-relative URI.

• The value of <taglib-location> can be
either a root-relative URI or a non-root-
relative URI. It cannot be an absolute
URI.

• The value of <taglib-uri> must be
unique in the deployment descriptor.

• The value of <taglib-location> must
point to a valid TLD resource path. It
can be either a TLD file or a JAR file
containing the TLD file at location
META-INF/taglib.tld.

✧ The syntax of the taglib directive is:
<%@ taglib
 prefix="test"
 uri="http://www.manning.com/sampleLib" %>

Understand the syntax of a taglib directive
thoroughly.
508 APPENDIX D EXAM QUICK PREP

Licensed to Tricia Fu <tricia.fu@gmail.com>

9.2 Given a design goal, create the custom tag structure in a JSP page to support that goal.

9.3 Given a design goal, use an appropriate JSP Standard Tag Library (JSTL v1.1) tag from
the “core” tag library.

Important concepts Exam tips

✧ An empty tag:
 <test:required />
 or
<test:required></test:required>

✧ A tag with attributes:
 <test:greet user="john"/>

✧ A tag that surrounds JSP code:
 <test:debug>
 Some code here
 </test:debug>

✧ Nested custom tags:
<test:switch>
 <test:case>
 Some JSP code Here
 </test:case>
 <test:default>
 Some JSP code Here too
 </test:default>
</test:switch>

You cannot nest a custom tag in the attribute list
of another custom tag like this:

<test:tag1 name="<test:tag2 />" />

In this case, the JSP engine may assume
"<test:tag2/">" as a String value passed to the
name attribute. It will not execute tag2.

Important concepts Exam tips

✧ JSTL’s core library contains a number of tags that
can be directly inserted into JSPs using the pre-
fix, c.

To use JSTL tags, you need to insert the
appropriate TLD in the /WEB-INF/libs directory
and declare it with:
<%@ taglib uri=”http://www.sun.com/jstl/
core_rt” prefix=”c” %>

General-purpose JSTL tags include <c:catch>,
which catches exceptions within a JSP, and
<c:out>, which displays the result of its value
parameter.
For example,
 <c:catch var=”e”>
 Java code
 </c:catch>
will hold the exception within the variable, e.

 <c:out value=”${expr}” />
will send the value of expr to the JspWriter for
display.

continued on next page
EXAM QUICK PREP 509

Licensed to Tricia Fu <tricia.fu@gmail.com>

JSTL provides variable support with <c:set>,
assigns a value to a variable, and <c:remove>,
which removes a variable from the specified
scope.
For example,
 <c:set var=”x” value=”12” />
will set the value of x equal to 12.

 <c:remove var=”x” scope=”session” />
will remove x from the session scope.

✧ Four JSTL tags enable flow control within JSPs:

<c:if> performs the tasks within its body if the
condition set by test is true. For example,
 <c:if test=”${num == ‘5’}”>
 ${x}
 </c:if>
will display the value of x if it equals 5.

<c:choose> contains a number of <c:when>
tags that examine the condition set by the test
parameter. For example,
 <c:choose>
 <c:when test=”${letter == ‘a’}>
 task1
 </c:when>
 <c:when test=”${letter == ‘b’}>
 task2
 </c:when>
 <c:otherwise>
 task3
 </c:otherwise>
 </c:choose>
will perform task1 if letter equals a, task2 if let-
ter equals b, and task3 if neither of the previous
conditions was met.

<c:forEach> iterates through the values of the
var parameter, similar to Java’s for loop. For
example,
 <c:forEach var=”num” begin=”0” end=”9”>
 ${num}
 </c:forEach>
will display each value of num as it passes from
0 to 9.

continued on next page

Important concepts Exam tips
510 APPENDIX D EXAM QUICK PREP

Licensed to Tricia Fu <tricia.fu@gmail.com>

<c:forTokens> functions similarly to
<c:forEach>, but instead iterates through the
tokens contained in the items string.
For example,
 <c:set var=”n” value=”one, two, three” />
 <c:forTokens var=”x” items=”${n}”
delims=”,”>
 ${x}
 </c:forTokens>
will display each value of x as cycles through
the comma-delimited list of tokens contained
within n.

✧ JSPs can access URL information with three dif-
ferent JSTL tags:

<c:url> rewrites the URL specified by the value
parameter and contains it within the var vari-
able. For example,
 <c:url value=”/index.html” var=”page” />
contains the encoded URL within page.

<c:import> enables you to access and include
content from outside the web application. For
example,
 <c:import url=”/index.html” />
includes the content identified by the url param-
eter.

<c:redirect> functions similarly to the
sendRedirect() method. For example,
 <c:redirect url=”/newpage.html” />
redirects processing to the page identified by
the url parameter.

Important concepts Exam tips
EXAM QUICK PREP 511

Licensed to Tricia Fu <tricia.fu@gmail.com>

CHAPTER 16—DEVELOPING CLASSIC CUSTOM TAG LIBRARIES

Objectives 10.1–10.3

10.1 Describe the semantics of the “Classic” custom tag event model when each event method
(doStartTag, doAfterBody, and doEndTag) is executed, and explain what the return value
for each event method means; and write a tag handler class.

Important concepts Exam tips

✧ doStartTag() is called after the JSP engine com-
pletely parses the opening tag. Before calling
doStartTag(), the JSP engines calls the following
methods:

1. setPageContext()
2. setParent()
3. setter methods for attributes

The Tag interface defines doStartTag().

Implementation classes of Tag interface can
return only two values in doStartTag():

SKIP_BODY or EVAL_BODY_INCLUDE

The IterationTag interface extends the Tag
interface, but does not add any new return val-
ues for doStartTag(). Implementation classes of
the IterationTag interface can return only one of
the two values in doStartTag(): SKIP_BODY or
EVAL_BODY_INCLUDE.

The BodyTag interface extends the IterationTag
interface, and adds a new return value,
EVAL_BODY_BUFFERED, for doStart Tag().
Implementation classes of BodyTag interface
can return any one of the three values in
doStartTag(): SKIP_BODY,
EVAL_BODY_INCLUDE, or
EVAL_BODY_BUFFERED.

Thus, doStartTag() can return
EVAL_BODY_BUFFERED only if the handler
class implements the BodyTag interface.

doStartTag() can return three values:

1. SKIP_BODY—Do not process the content
of the body. Ignore it completely.

2. EVAL_BODY_INCLUDE—Process the con-
tents of the body as with the normal JSP
code.

3. EVAL_BODY_BUFFERED—Process the
contents of the body as with the normal JSP
code, but the output should be buffered and
not sent to the client. The JSP engine uses
a stack of javax.servlet.jsp.tagext.Body Con-
tent objects for buffering.

continued on next page
512 APPENDIX D EXAM QUICK PREP

Licensed to Tricia Fu <tricia.fu@gmail.com>

✧ doAfterBody() is called after the JSP engine
completely evaluates the entire body of the tag.
This happens the first time only if:

1. The tag implements IterationTag and
doStartTag() returns
EVAL_BODY_INCLUDE.

OR

2. The tag implements BodyTag and doStart-
Tag() returns EVAL_BODY_INCLUDE.

OR

3. The tag implements BodyTag and doStart
Tag() returns EVAL_BODY_BUFFERED.

The body of the tag is evaluated again (repeat-
edly), that is, the doAfterBody() is called
repeatedly, only if:

1. The tag implements IterationTag and the
previous call to doAfterBody() returns
EVAL_BODY_AGAIN.

OR

2. The tag implements BodyTag and the previ-
ous call to doAfterBody() returns
EVAL_BODY_AGAIN.

OR

3. The tag implements BodyTag and the previ-
ous call to doAfterBody() returns
EVAL_BODY_BUFFERED.

doAfterBody() is not called for tags that imple-
ment only the Tag interface.

continued on next page

Important concepts Exam tips
EXAM QUICK PREP 513

Licensed to Tricia Fu <tricia.fu@gmail.com>

doAfterBody() can return three values:

1. EVAL_BODY_AGAIN—Evaluate the body of
the tag again. Do not use buffering.

2. EVAL_BODY_BUFFERED—Evaluate the
body of the tag again, but the output of the
tag should be buffered.

3. SKIP_BODY—Do not process the content
of the body again. Ignore it. The loop is over
and doAfterBody() is not called again.

The Tag interface does not have doAfterBody().

The IterationTag interface defines doAfter-
Body().

Implementation classes of the IterationTag
interface can return only one of two values in
doAfter(): EVAL_BODY_AGAIN or SKIP_BODY.

The BodyTag interface extends the IterationTag
interface, and adds a new return value,
EVAL_BODY_TAG, for doAfter Body().
EVAL_BODY_TAG is deprecated.

Implementations classes of the BodyTag inter-
face can return three values in doAfterBody():
EVAL_BODY_AGAIN,
EVAL_BODY_BUFFERED, or SKIP_BODY.

Thus, doAfterBody() can return
EVAL_BODY_BUFFERED only if the handler
class implements the BodyTag interface.

✧ doEndTag() is always called at the end of pro-
cessing a tag.

doEndTag() can return two values:

1. SKIP_PAGE—Do not process the rest of the
JSP page. Ignore it completely.

2. EVAL_PAGE—Process the rest of the JSP
page as with the normal JSP code.

The Tag interface defines doEndTag().

Implementation classes of the Tag interface
can return two values in doEndTag():
SKIP_PAGE or EVAL_PAGE

IterationTag and BodyTag inherit doEndTag().

They do not add any new return values. Imple-
mentation classes of IterationTag and BodyTag
also can return one of the two values in doEnd-
Tag(): SKIP_PAGE or EVAL_PAGE.

doEndTag() is always called at the end of pro-
cessing a tag regardless of the interfaces
implemented and regardless of the return val-
ues from doStartTag() and doAfterBody()

Important concepts Exam tips
514 APPENDIX D EXAM QUICK PREP

Licensed to Tricia Fu <tricia.fu@gmail.com>

10.2 Using the PageContext API, write tag handler code to access the JSP implicit variables and
access web application attributes.

Getting Implicit Objects in the Tag Handler

Getting Page Attributes in the Tag Handler

Implicit objects
Getting implicit objects

Using convenience methods Using constants

application pageContext.getServletContext() pageContext.getAttribute
(PageContext.APPLICATION)

session pageContext.getSession() pageContext.getAttribute
(PageContext.SESSION)

request pageContext.getRequest() pageContext.getAttribute
(PageContext.REQUEST)

response pageContext.getResponse() pageContext.getAttribute
(PageContext.RESPONSE)

out pageContext.getOut() pageContext.getAttribute
(PageContext.OUT)

config pageContext.getConfig() pageContext.getAttribute
(PageContext.CONFIG)

page pageContext.getPage() pageContext.getAttribute
(PageContext.PAGE)

pageContext pageContext.getAttribute
(PageContext.PAGECONTEXT)

exception pageContext.getException() pageContext.getAttribute
(PageContext.EXCEPTION)

Scope
Getting attributes in different scopes

Using implicit objects Using constants

application pageContext.getServlet-
Context().getAttribute("name")

pageContext.getAttribute(
 "name", PageContext.APPLICATION_SCOPE)

session pageContext.getSes-
sion().getAttribute("name")

pageContext.getAttribute(
 "name", PageContext.SESSION_SCOPE)

request pageContext.getRe-
quest().getAttribute("name")

pageContext.getAttribute(
 "name", PageContext.REQUEST_SCOPE)

page pageContext.getAt-
tribute("name")

pageContext.getAttribute(
 "name", PageContext.PAGE_SCOPE)
EXAM QUICK PREP 515

Licensed to Tricia Fu <tricia.fu@gmail.com>

10.3 Given a scenario, write tag handler code to access the parent tag and an arbitrary
tag ancestor.

Important concepts Exam tips

✧ The Tag interface has two methods:
• public void setParent(Tag parentTag)
• public Tag getParent()

The container calls setParent() before calling
doStartTag(). It is the responsibility of the tag
implementation class to save this reference
in a private member for later use.

When the getParent() method is called, the
tag returns its parent tag (the outer handler).

✧ The TagSupport class implements the Tag
interface and provides implementation for the
setParent() and getParent() methods.

So a class derived from the TagSupport class
need not maintain its own parent, nor does it
need to implement these methods. It can call
getParent() to retrieve the outer handler, and
subsequently call getParent() on the returned
value to get ancestors.

✧ The TagSupport class also provides a new
convenience method:

public static final Tag
findAncestorWithClass(Tag from,
java.lang.Class klass)

This method works outward within the
nested tags and gets the instance of a given
class type that is closest to the given tag
instance.

The findAncestorWithClass() is a static method.
Hence, it is not necessary to subclass TagSup-
port to use this method. Even simple tag han-
dlers that directly implement the Tag interface
can use TagSupport.findAncestorWithClass().
516 APPENDIX D EXAM QUICK PREP

Licensed to Tricia Fu <tricia.fu@gmail.com>

CHAPTER 17—DEVELOPING “SIMPLE” CUSTOM TAG LIBRARIES

Objectives 10.4–10.5

10.4 Describe the semantics of the “Simple” custom tag event model when the event method
(doTag) is executed; write a tag handler class; and explain the constraints on the JSP
content within the tag.

Important concepts Exam tips

✧ When the web container encounters a ‘sim-
ple’ custom tag, it performs five main steps:

1. It begins by creating an instance of the tag
handler class.

2. It invokes setParent() and setJspContext()
on the tag handler. This provides a means
for it to interact with the application.

3. If the simple tag contained attributes, the
web container will execute the (setter)
methods corresponding to each.

4. It invokes setJspBody() to store the tag
body for processing by the tag handler.

5. It invokes the tag handler’s doTag()
method, which performs the tag’s logic.

In the ‘classic’ model, the web container doesn’t
always create a new tag handler instance. This is
an important difference between the ‘classic’
and ‘simple’ methodologies.

✧ A ‘simple’ tag handler must extend Simple-
TagSupport and provide an implementation of
the doTag() method.
For example,
public class ExampleTag extends
 SimpleTagSupport
{
 public void doTag() throws JspException,
 IOException
 {
 getJspContext.getOut.write(“Example”);
 }
}
will display a string whenever the simple tag
is encountered.

Unlike ‘classic’ handlers, which contain multiple
event methods, a ‘simple’ handler performs all of
its event processing with doTag().

✧ The body of a simple tag can contain text and
EL expressions, but no scripts (declarations,
expressions, or scriptlets). Therefore, the
<body-content> element of a simple tag TLD
cannot be JSP.
EXAM QUICK PREP 517

Licensed to Tricia Fu <tricia.fu@gmail.com>

10.5 Describe the semantics of the Tag File model; describe the web application structure for
tag files; write a tag file; and explain the constraints on the JSP content in the body of
the tag.

Important concepts

✧ Tag files contain JSP syntax code and must end in .tag or .tagx.

✧ Tag files don’t need tag library descriptors. Instead, they are referred to by their directory in a JSP
taglib statement with the tagdir attribute.
For example,
<%@ taglib prefix=”ex” tagdir=”/WEB-INF/tags” %>
assigns the prefix “ex” for tags in the given directory. To refer to an individual file, use the tag
<ex:filename> within the JSP.

✧ Tag files must be placed in the /WEB-INF/tags directory or a subdirectory.

✧ Tag files provide implicit variables and additional directives and actions for processing.

✧ In particular, the <jsp:doBody> enables a tag file to process its body content. This content can be
regular text or EL expressions, but it cannot contain script elements (declarations, expressions,
and scriptlets).
518 APPENDIX D EXAM QUICK PREP

Licensed to Tricia Fu <tricia.fu@gmail.com>

CHAPTER 18—DESIGN PATTERNS

Objectives 11.1 and 11.2

11.1 Given a scenario description with a list of issues, select a pattern that would solve the
issues. The list of patterns you must know are:
• Intercepting Filter,
• Model-View-Controller,
• Front Controller,
• Service Locator,
• Business Delegate
• Transfer Object

Issues Pattern

• Receive requests before other elements
• Pre-process requests using filters
• Redirect requests to different resources
• Performs necessary post-processing on outgoing responses

Intercepting Filter

• Flexible design
• Allows different designers to focus on different aspects of

the application
• Provide services to different clients: web client,

WAP client, etc.
• Multiple views, such as HTML or WML

Model-View-Controller (MVC)

• Central point of receiving requests
• Single resource to enforce security
• Prevents having to alter many different resources
• Applies policies consistently across application

Front Controller

• Provides a directory for accessing service resources
• Centralizes methods of connection and access
• Makes use of Java Naming and Directory Interface (JNDI)

Service Locator

• Reduces coupling between presentation and business tiers
• Proxy for the client
• Client-side facade
• Caches business service references for presentation-tier

components
• Caches business service results for presentation-tier

components
• Encapsulates business service lookup
• Encapsulates business service access
• Decouples clients from business service API

Business Delegate

• Previously known as Value Object
• Small object
• Grouped information
• Read-only data
• Reduces network traffic

Transfer Object
EXAM QUICK PREP 519

• Increases response speed
• Transfers data across networked tiers

Licensed to Tricia Fu <tricia.fu@gmail.com>

11.2 Match design patterns with statements describing potential benefits that accrue from the
use of the pattern, for any of the following patterns:
• Intercepting Filter,
• Model-View-Controller,
• Front Controller,
• Service Locator,
• Business Delegate
• Transfer Object

Important concepts Exam tips

✧ Intercepting Filter
The Intercepting Filter design pattern is used
where requests and/or responses need to be
processed in a consistent manner. This filter
wraps around the application, receiving
requests as they come in and processing
responses before they go out.

The potential benefits of Intercepting Filters are:
• Apply request pre-processing consistently
• Central point of response post-processing
• Redirect requests to specific resources

✧ Model-View-Controller (MVC)
The Model-View-Controller design pattern is
applicable in situations where the same data
(Model) is to be presented in different for-
mats (Views), but is to be managed centrally
by a single controlling entity (Controller).

The potential benefits of MVC are:
• Flexible design
• Centrally managed data
• Multiple ways of presentation

✧ Front Controller
The Front Controller design pattern serves as
the primary gate for requests entering the
application. This object enforces security
restrictions and controls the view shown to
the client.

The potential benefits of Front Controllers are:
• Central point for selecting and screening

requests
• Controls view for incoming requests
• Request processing can be changed by alter-

ing a single object

✧ Service Locator
The Service Locator design pattern provides
a central directory for resources to locate ser-
vices across the enterprise. This system con-
trols the communication methodology to be
used (recommended: Java Naming and
Directory Interface (JNDI))

The potential benefits of Service Locators are:
• Centralizes the process of looking up services
• Controls connectivity and the means of direc-

tory access
• Can provide cache for repeated resource

requests

✧ Business Delegate
A Business Delegate is an object that com-
municates with the business service compo-
nents on behalf of the client components.

The client-side components delegate the
work of accessing the business services to
the Business Delegate object.

The potential benefits of Business Delegates are:
• Reduced coupling between presentation and

business tiers
• Cached business service results for presen

tation-tier components.
• Business service lookup encapsulated
• Business service access encapsulated
• Decoupled clients from business service

continued on next page
520 APPENDIX D EXAM QUICK PREP

Licensed to Tricia Fu <tricia.fu@gmail.com>

✧ Transfer Object
A Transfer Object is a small-sized serializable
Java object that is used for transferring data
over the network in a distributed application.

The potential benefits of Transfer Objects are:
• Less communication overhead
• Fewer number of remote calls
• Reduction in network traffic
• Increased response speed

Important concepts Exam tips
EXAM QUICK PREP 521

Licensed to Tricia Fu <tricia.fu@gmail.com>

Licensed to Tricia Fu <tricia.fu@gmail.com>

index
Symbols

%= delimiter 166, 170
<%@ include %>. See include

directive

A

absolute URI 287
abstraction 377
access control list 140
accessing JavaBean 269
ACL. See access control list
actions 19, 166, 171, 364, 366,

368, 372
custom 286
forward 225
include 223
plugin 171
standard 172
syntax 172

active resources 22
Active Server Pages 15
addCookie() 43
addDateHeader() 43
addHeader() 43
addIntHeader() 43
alias 366
Apache

Jakarta Project 287
Software Foundation 8
tag libraries 287

application 200
events 88
scope 207
server 22
state 120

APPLICATION_SCOPE 210
applicationScope 236, 239,

500
architecture

in JSP 18
J2EE 15
Model 1 18
Model 2 18
multi-tier 400

attacks 141
attrib 367
attribute 313–314, 357, 359–362,

365–374
attribute scopes 55

context scope 55
request scope 55
session scope 55

attributeAdded() 86–87
attributeRemoved() 87
attributeReplaced() 87
auditing 141
authentication 140
authentication mechanisms

142
web applications 146

authorization 140
authorization constraint 149

B

Base64 145
basic authentication 143
bean

containers 252
initialization 265
variable scope 265

beanName 260
BigDecimal 242, 249
BigInteger 242, 249
body content 313, 316, 353–360,

362–363, 366–374
empty 316
JSP 317
tagdependent 317

BodyContent 319
getEnclosingWriter() 337
getString() 337

BodyTag 319, 333, 353–357, 359,
362
doInitBody() 333–334
EVAL_BODY_BUFFERED

333–334
EVAL_BODY_TAG 333
example 336
setBodyContent() 333–334

BodyTagSupport 319, 339,
355–357, 374
methods 339

body-value 363
buffer attribute 184
523

Tomcat 8
Web Server 7 autoFlush attribute 184 bufferSize 239

Licensed to Tricia Fu <tricia.fu@gmail.com>

business delegate 393
business logic 237

C

caching
GET vs. POST 33
response page 43
results of remote invocations

396
static data 47
Value List Handler pattern 381

CGI scripts 5
See also Common Gateway In-

terface
class attribute 259
class files 69
classes directory 69

WEB-INF 69
Class.forName() 46
client authentication 145
code reviews 141
collection access 236, 241–242,

249, 501
comments 166, 172
committed 44
Common Gateway Interface 4

limitations 5
compilation

of JSP class into servlets 176
page 175
phase 176
servlets 9

components
application 18
controller 17
J2EE 22
JavaBeans 251
of URI 76
reusing JSP 220
reusing software 219
web 22

conditional statements 191
confidentiality 141
config 204
configuration web application 90

content type, common values
42

Content-Length 25
Content-Type 25
contentType attribute 185
context

path 76
scope 55
See also Servlet Context

contextDestroyed() 88–89
contextInitialized() 88–89
cookies 43, 121, 132, 236,

239–240, 500
co-operative tags 343
CORBA 379
custom tags 172

and JavaBeans 347
as custom actions 286
attributes 295
body content 296
buffering the body content

339
descriptor 287
empty 294
hierarchy 322
informing JSP engine 288
libraries 287
nested 297
prefix 293
usage 293, 298
usage in JSP pages 293
validation 347

D

data access object 382
data integrity 141
data privacy 141
<declaration> 211, 213
declarations 168

and variable initialization 191
JSP 20
JSP syntax 166
jspDestroy() 178
jspInit() 178
order in JSP 190

translated as 189
XML syntax 213

declarative security 149
example 152

default web application 70–71
:definition 90
DELETE 25
delimiters 17, 170
denial of service attacks 142
deployment descriptor 23, 46, 70,

246, 248–249
overview 71
properties 71, 238, 355–356,

367, 369
sample 72
servlet 73

description 312–313, 315
design patterns 377

business delegate 393
data access object 382
distributed 379
front controller 389
gang of four 377
J2EE 379
model-view-controller 18, 116,

385–386, 391
page-by-page iterator 381
paged-list 381
required for SCWCD 382
service activator 382
service-locator 382
tiers 380
value list handler 381
value object 397

destroy() 48, 104
digest authentication 145
<directive.include> 213
<directive.page> 213

example 211
directives 167, 288

include 167, 220
JSP 19, 167
JSP syntax 166
page 167
syntax 168
taglib 167, 288
524 INDEX

CONNECT 25
containsHeader() 43

order of 190
syntax 168

translated as 189
XML syntax 213

Licensed to Tricia Fu <tricia.fu@gmail.com>

display-name 312–313
distributed environment 92

HttpSession 93
ServletContext 92
session migration 129
systems 21
web applications 92

div 242
doAfterBody() 329, 353, 356
document root 68
doDelete() 35
doEndTag() 320, 322, 353, 356
doFilter() 104–105
doGet() 35
doHead() 35
doInitBody() 333–334
doOptions() 35
doPost() 35
doPut() 35
doStartTag() 320, 322, 353, 356
doTag() 353–358, 360–362,

372–374
doTrace() 35
doXXX() 35–36

parameters 36
dynamic attributes 359–360, 362,

367–368, 372–373
dynamic inclusion 223

passing parameters 226
sharing objects 228

DynamicValues 359

E

EJB container 22
EL 236–249, 356, 361–362, 364,

366–367
empty tag 294, 324

with attribute 326
empty value 316
encodeRedirectURL() 134
encodeURL() 134
Enterprise JavaBeans

components 380
support 7

error conditions 45

in attributes 195
in scripting elements 195
in template text 194

EVAL_BODY 354, 373
EVAL_BODY_AGAIN 329–330
EVAL_BODY_BUFFERED

333–334
EVAL_BODY_INCLUDE

321–322
EVAL_BODY_TAG 333
EVAL_PAGE 321, 323, 354, 373
events listeners 85, 88
:example 108, 291, 410
exception implicit variable 206
explicit mapping 290, 313
Expression Language 236–238,

240–241, 245, 249, 355, 371
<expression> 212–213
expressions 170, 237–238,

240–242, 247, 249
and implicit variable out 203
JSP 20, 170
JSP syntax 166
request-time attribute 194, 213
syntax 170
translated as 189
valid and invalid 170
XML syntax 213

extends attribute 184

F

fail over 92
Filter 103

destroy() 104
doFilter() 104
init() 103

FilterChain 105
doFilter() 105

FilterConfig 105
filters 98

API 102
chain 98
configuration 106–107
example 100
in MVC 116

findAncestorWithClass() 338,
345–346, 356

findAttribute() 210
forEach 367
Form-based authentication 146

advantages 146
disadvantages 146

forward action, usage 225
forward() 57, 203
<forward> 20, 171, 223
forwarding a resource 57–58
fragment 362, 368–370
front controller 389
FTP 4
function 236, 241, 244–249
function-class 245–246
function-signature 246

G

Gang of Four 377
GenericServlet 11

getServletContext() 85
init() 47

GET 25, 33
features 33

getAttribute() 56, 123, 210
getAttributeNames() 56
getAttributeNamesInScope() 210
getAttributesScope() 210
getBodyContent() 339, 357, 362,

374
getEnclosingWriter() 337
getExpressionEvaluator() 355
getFilterName() 105
getHeaderNames() 39
getHeaders() 39
getInitParameter() 50, 84, 105
getInitParameterNames() 50, 84,

86, 105
getJspBody() 356–357, 362, 369,

373
getJspContext() 354, 356–358,

361–363, 373–375, 471
getNamedDispatcher() 58
getOut() 354–355, 361–363, 374
INDEX 525

errorPage attribute 182
escape sequences 194

threading 116
uses 99

getOutputStream() 41–42
getParameter() 37–38, 239

Licensed to Tricia Fu <tricia.fu@gmail.com>

getParameterNames() 37–38
getParameterValues() 37–38, 156
getParent() 320, 355, 357,

372–373, 375
getPreviousOut() 339
getProperty(), automatic type con-

version 278
<getProperty> 269
getRealPath() 54, 179
getRemoteUser() 156
getRequestDispatcher() 57
getResource() 53
getResourceAsStream() 53

limitations 54
getServletContext() 50, 105, 238
getServletInfo() 189
getServletName() 50, 52
getServletSession() 238
getSession() 123
getString() 337
getUserPrincipal() 156
getValue() 339
getValues() 339
getVariableResolver() 355
getWriter() 42
GoF. See Gang of Four

H

hashcode 141
HEAD 25, 34
header 24, 26, 38–40, 236,

239–241, 500
management 43
names 43

headerValues 236, 239–242, 500
HTML

comments 172
example Hello User 16
files on web server 5, 69
FORM and HTTP methods

33
FORM for authentication 146
MIME type 185
tables 361
tags and Java code 15

HTML output
from custom tags 294, 324
from expressions 170
from JSP page 17
from scriptlets 169
using implicit variable 203
using PrintWriter 40

HTTP 23, 239
basic authentication 143

advantages 144–146
disadvantages 144

basics 24
error conditions 45
GET 25
HEAD 25
methods 32

comparison 33
POST 25
PUT 26
request 24
response 26
status codes 45

HTTP Digest authentication 145
advantages 145
disadvantages 145

HTTP request, servlets 35
HttpJspPage 177
HTTPS 145
HTTPS client authentication 145

advantages 145
disadvantages 146

HttpServlet 12, 35
request processing 35
service() 35

HttpServletRequest 12, 36–37
getHeader() 39
getHeaderNames() 39
getHeaders() 39
getRemoteUser() 156
getUserPrincipal() 156
isUserInRole() 156
methods to identify users 156

HttpServletRequestWrapper 110
example 112

HttpServletResponse 12, 43
containsHeader() 43

sendRedirect() 44
setDateHeader() 43
setHeader() 43
setIntHeader() 43
status codes 45

HttpServletResponseWrapper 110
example 112

HttpSession 121, 239
distributed environment 93
example 122
getAttribute() 123
getSession() 123
invalidate() 130
isNew() 132
setAttribute() 123
setMaxInactiveInterval() 131
usage 122

HttpSessionActivationListener 94,
129
sessionDidActivate() 129
sessionWillPassivate() 129

HttpSessionAttributeListener
86–87, 125
attributeAdded() 86
attributeRemoved() 87
attributeReplaced() 87

HttpSessionBindingEvent 125
HttpSessionBindingListener 125,

128
example 125
valueBound() 125
valueUnbound() 125

HttpSessionListener 126
example 127
sessionCreated() 126
sessionDestroyed() 126

I

id attribute 259
IllegalArgumentException 94
IllegalStateException 42, 44
implicit mapping 290, 312
implicit objects 198, 200, 210, 259

accessing form custom tags 339
implicit variables 198, 200, 236,
526 INDEX

template 15
URL-rewriting 133

encodeRedirectURL() 134
encodeURL() 134

238, 240–241, 249
application 200

Licensed to Tricia Fu <tricia.fu@gmail.com>

implicit variables (continued)
config 204
declaration 200
exception 206
out 203
page 202
pageContext 202
request 202
response 202
session 201

import attribute 182
in process servlet container 6
inactivity of session 122
include action, usage 223
include directive 167, 220

accessing variables 221
include() 57, 203
<include> 171
including a resource 57–58
info attribute 185
init() 46, 103
init(ServletConfig) 49
integrity attacks 142
invalidate() 130
IP 121
isELIgnored 367
isErrorPage attribute 182, 206
isNew() 132
ISO-8859-4 42
isUserInRole() 156
IterationTag 319, 329, 353–354,

356–357, 359, 362
doAfterBody() 330
EVAL_BODY_AGAIN 330,

333
example 331

iterative statements 191

J

J2EE pattern catalog 381
JAR

classpath 9
content type 41
file 69
jar command 70

sending to browser 41
servlet.jar 9

Java Standard Tag Library 237
JavaBeans

accessibility 259
advantages 253
and custom tags 347
constructors 252
containers 252
conventions 252
declaration 258
example 252
in JSP actions 258
in scripting elements 274
in Servlets 271
indexed properties 278
initializing 265
non-string data types 276
persisting 255
properties 252
property types 276
requirements for JSP 252
scope 259
serialized 255
support in JSP for 254
using serialized beans 255

java.io.Serializable 93
java.lang.Math 242
JavaServer Pages 15, 21, 166, 380

comparison with servlets 17
example 15

javax.servlet package 10
javax.servlet.http package 11
JMS server 22
JNDI server 22
j_password 146
j_security_check 146
JSP 237–238, 240–241, 244–249,

317
actions 171
comments 172
directives 167
expressions 170
forward 171, 225
getProperty 171, 269
include 171

setProperty 171, 266
useBean 171, 258

JSP 2.0 353, 355, 359, 363–364,
371

JSP architecture models 18
model 1 18
model 2 18

JSP life-cycle methods
jspDestroy() 178
jspInit() 178
_jspService() 178

JSP life-cycle phases
compilation 176
example 178
loading and instantiation 177
phases 175
translation 176

JSP Model 2 architecture 116
JSP page 15

life-cycle methods 177
XML syntax 211

JSP page scopes 207
JSP page translation

rules 189
JSP script 237
JSP scriptlets 169
JSP syntax elements 166
JspContext 355–356, 358,

361–362, 372, 374
jspDestroy() 178
JspException 319
JspFragment 356–357, 362–363,

369, 372, 374
jspInit() 178
JspPage 177
_jspService() 178
JspTag 355–356
JspTagException 319
jsp-version 312
JspWriter 239, 355, 357,

362–363, 369–370, 374
JSTL 237
j_username 146

L

INDEX 527

location in a web application
69

usage 223
plugin 171

language attribute 184
large-icon 312–313

Licensed to Tricia Fu <tricia.fu@gmail.com>

lazy loading 47
lib directory 69
life-cycle methods

JSP 177
Servlet 45

listener configuration 90
listener interfaces. See listeners
listeners 85, 88, 312

HttpSessionActivationListener
94

HttpSessionAttributeListener
86–87

ServletContextListener 88–89
load balancing 92
loading and instantiation JSP

phases 177
logical

conjunction 243
disjunction 243
expressions 243
inversion 243
operators 236, 241, 501

M

malicious code 141
mapping

filter 107
JSP page to servlet 204
URL to servlet 75–76

:method attribute 35
MIME type 53
MIME Type Mapping 71, 238,

355–356
mime-mapping

example 72, 410
mod 242
model 1 architecture 18
model 2 architecture 18
model-view-controller 116,

385–387, 391
mutating JavaBeans 266
MVC. See model-view-controller

N

nested custom tags 297, 343
newInstance() 46
non-empty tag 328
non-root relative URI 287

O

operators 236–237, 240–243,
249, 501

OPTIONS 25
out 203
out-of-process servlet container 7
output stream 41, 199, 237

P

page directive 167
attributes 181
autoFlush attribute 184
buffer attribute 184
contentType attribute 185
errorPage attribute 182
extends attribute 184
import attribute 182
info attribute 185
isErrorPage attribute 182
language attribute 184
pageEncoding attribute 185
session attribute 182

page implicit variable 202
page relative URI 288
page scopes 207, 209
PageContext 355–356, 372

findAttribute() 210
forward() 203
getAttribute() 210
getAttributeNamesInScope()

210
getAttributesScope() 210
include() 203
removeAttribute() 210
setAttribute() 210

pageContext 202, 236, 238–239,
241

PageData 347
page-encoding 367

pageScope 236, 238, 500
param 236, 239–240, 248, 267,

500
<param> 226
paramValues 236, 239–241,

500
passive resources 22
path info 77
paths, context, servlet info 76
<plugin> 20, 171
POST 25, 33

features 33
prefix 359, 361, 364–372, 374
prefix attribute 293
preinitializing 47
preloading. See preinitializing
presentation logic 237
PrintWriter

flush() 44
generating HTML 40
usage 40

programmatic security 156
example 156

property access 241
property attribute 267
property files 53
proxy server 121
public-key cryptography 142
PUT 26

R

Reader 362, 369–370
readObject() 93
redirecting request 44
relational expressions 243
relative path 54
release() 321, 323
reload() 33
removeAttribute() 210
removeValue() 339
request headers, retreiving 38–

39
request implicit variable 202

redirecting 44
request scope 55, 208, 210, 236,
528 INDEX

name 267, 313, 315
name-from-attribute 366

pageEncoding attribute 185
PAGE_SCOPE 210

239, 241, 500
request URI, paths 76

Licensed to Tricia Fu <tricia.fu@gmail.com>

RequestDispatcher 57–58
forward() 57
include() 57

request-time attribute expressions
usage 194

required attribute 315
resource moved permanently

45
resource not found 45
response header

Date 43
Expires 43
Last-Modified 43
names 43
Refresh 43
setting 43

response implicit variable 202
sending 40

ROOT directory 71
root element 212
root relative URI 287
<root> 212
rtexprvalue 315, 360, 362, 368,

372

S

scope attributes 238–239
scopes 207, 259

application 207
bean variable 265
page 207, 209
request 208
session 207

scripting elements 168, 171
usage 189

scriptless 362, 367, 373
<scriptlet> 213
scriptlets 169, 237

conditional and iterative 191
JSP 20, 169
JSP syntax 166
order in JSP 190
printing HTML 169
translated as 189
variable initialization 191

Secure Socket Layer 145
sendError() 45
sendRedirect() 44
Serializable 93
serialized beans, usage 262–263
server extensions 5
server-side includes 15
service(), overloading 35
Servlet 10

destroy() 48
init() 46
service() 47

servlet
container 5

relationship with Servlet API
10

types 5
context

initialization parameters 85
destroyed state 48
destroying 48
Hello World example 8
in deployment descriptor 50
initialization parameters 85
initialized state 46
initializing 46
instantiating 46
life cycle 45

methods 48
loaded state 46
loading 46
mapping 75–76
path 77

identification 77
pre-initializing 47
request processing 35
servicing state 47
state transition 48
unloaded state 48
unloading 48

Servlet API 10, 36
advantages and disadvantages

12
ServletConfig 50, 85, 204

example 51
getInitParameter() 50, 74

getServletName() 50
methods 50

ServletContext 53, 84, 239
distributed environment 92
getInitParameter() 84
getInitParameterNames() 84,

86
getNamedDispatcher() 58
getRealPath() 54
getRequestDispatcher() 57
getResource() 53
getResourceAsStream() 53
initialization 84

ServletContextAttributeEvent 92
ServletContextAttributeListener

attributeAdded() 87
attributeRemoved() 87
attributeReplaced() 87
methods 87

ServletContextEvent 89
ServletContextListener 88–89

contextDestroyed() 88–89
contextInitialized() 88–89
example 88

ServletOutputStream 41
ServletRequest 11, 37, 239

getParameter() 37
getParameterNames() 37
getParameterValues() 37
getRequestDispatcher() 57
use 37

ServletRequestWrapper 110
ServletResponse 11, 40

getOutputStream() 41
getWriter() 40
setContentType() 42

ServletResponseWrapper 110
session 120, 201

accessibility 124
attribute 182
cookies 132
establishing 121
identifier 121
implementation 131
listener interfaces 124
scope 55, 207
INDEX 529

XML syntax 213
secrecy attacks 142

getInitParameterNames() 50
getServletContext() 50

timeout 122, 130, 132
URL rewriting 133

Licensed to Tricia Fu <tricia.fu@gmail.com>

session ID 121
sessionCreated() 126
sessionDestroyed() 126
sessionDidActivate() 129
SESSION_SCOPE 210
sessionScope 236, 239, 500
sessionWillPassivate() 129
setAttribute() 56, 123, 210
setBodyContent() 333–334
setContentType() 42
setDateHeader() 43
setDynamicAttribute() 359–361,

372–373
setHeader() 43
setIntHeader() 43
setJspBody() 355
setJspContext() 355, 375, 471
setMaxInactiveInterval() 131
setPageContext() 321, 355
setParent() 321, 355, 375, 471
setProperty()

attributes 266
automatic type conversion 277
name 267
param 267
property 267
setting from request parameters

268
value 267

<setProperty> 266
using request parameters 268
wild card 269

setValue() 338
short-name element 312
SimpleTag 353–357, 369,

371–375, 471
example 359
processing body content

362–364
SimpleTagSupport 353–358, 360,

371–372, 374
SKIP_BODY 321–322, 354, 373
SKIP_PAGE 321, 323
small-icon 312–313, 367
sniffing 141–142
spoofing 142

standalone servlet container 6
state 120
stateless protocol 23
static attribute 360–361
static inclusion 220
status codes, sending 45

T

Tag 318, 352–359, 372
body content 362–363
directives 366–368
jsp:invoke 369
TLDs 365

tag 312–313, 320
doEndTag() 320, 322
doStartTag() 320, 322
EVAL_BODY_INCLUDE

321–322
EVAL_PAGE 321, 323
extension API 318
file 352, 364–374
files 352–353, 363–371, 374
getParent() 320–321
handlers 286, 355, 369,

371–372
tag files 352–353, 364–365

release() 321, 323
setPageContext() 321
setParent() 321
SKIP_BODY 321–322
SKIP_PAGE 321, 323

tag library 287
descriptor 236, 245, 247, 249,

287, 310
DTD 311
example 310
location 289
resolution 291

tag-class 313
tagdependent 317, 362–363, 367,

373
tagdir 364–368, 370–371, 374
TagExtraInfo 347
taglib 245–248, 358–361,

373–374

explicit mapping 290
location 312
map 290–291
SimpleTag 354
subelements 311–312
tag files 364–371
uri 312

taglib-location 290
TagLibraryValidator 347
taglib-uri 290
TagSupport 319, 338, 355–356,

374
findAncestorWithClass()

338
getValue() 339
methods 338
removeValue() 339
setValue() 338

TagVariableInfo 347
tei-class 313
<text>, example 212
throwable 206
TLD 246, 248–249, 353,

358–363, 365–368, 371–
372
Resource Path 290
See also tag library, descriptor

tlib-version 245–246, 312
Tomcat 8

configuring users 146
installation 403, 407

tomcat-users.xml 146
TRACE 25
translation phase 176
translation units 174
transport-guarantee 151

CONFIDENTIAL 151
INTEGRAL 151
NONE 151

trojan horse 141
TryCatchFinally 347
type attribute 259, 315
types of URIs 287

U

530 INDEX

SSI 15
SSL 145

directive 167, 288
prefix 293

unauthorized access 45
uniform resource identifier 23

Licensed to Tricia Fu <tricia.fu@gmail.com>

URI 23, 241, 244, 246–249, 312
absolute 287
non-root relative 287
path 58
root relative 287
types 287

URL 23
URL rewriting 121, 133

example 135
URN 23
useBean

attributes 258
attributes usage 260
beanName 260
class 259
id 259
scope 259
type 259
typecast problem 261

<useBean> 258
type attribute 264

user configuration 146
user data constraint 149

example 152

V

validator 312
value 267
value object 397
valueBound() 125

valueUnbound() 125
variable directive 366
variable element 313
variable initialization 191
varReader 369–370
virus 141

W

war. See web archive
web application 22, 90

directory structure 68
document root 68
in distributed environment 92
properties 90
server 22
WEB-INF 69

web archive 70
creation 70

web browser, HTTP methods 32
web container 237, 245, 353–354,

371, 375, 471
SimpleTag 355–356, 358–361
tag files 364–368
TLDs 246–247

web resource collection 149
example 150

web server 4–5
web site attacks 141

availability attacks 142
denial of service attacks 142

integrity attacks 142
secrecy attacks 142

webapps directory 68
WEB-INF 69

classes 69
lib 69
web.xml 70

web.xml 46, 70, 244, 246–248
servlet example 50

well-known URIs 290
worm 141
wrapper classes 106

usage 110
writeObject() 93

X

XML 237, 244–245
XML Name Space 213
XML syntax for JSP pages 211

actions 214
comments 214
directives 213
root 212
scripting elements 213
text 214

xmlns 212

Z

zip file 69
INDEX 531

Licensed to Tricia Fu <tricia.fu@gmail.com>

M A N N I N G $49.95 US/$67.95 Canada

,!7IB9D2-djedic!:p;O;T;t;p
ISBN 1-932394-38-9

JAVA CERTIFICATION

SCWCD Exam Study Kit SECOND EDITION

Java Web Component Developer Certification

H. Deshmukh • J. Malavia • M. Scarpino

W ith the tremendous penetration of J2EE in the enterprise, passing the
Sun Certified Web Component Developer exam has become an important

qualification for Java and J2EE developers. To pass the SCWCD exam (Number:
310-081) you need to answer 69 questions in 135 minutes and get 62% of them
right. You also need $150 and this (completely updated and newly revised) book.

In its first edition, the SCWCD Exam Study Kit was the most popular book used to
pass this most desirable web development certification exam. The new edition will
help you learn the concepts—large and small—that you need to know. It covers the
newest version of the exam and not a single topic is missed.

The SCWCD exam is for Sun Certified Java Programmers who have a certain
amount of experience with Servlets and JSPs, but for those who do not, the book
starts with three introductory chapters on these topics. Although the SCWCD Exam
Study Kit has one purpose, to help you get certified, you will find yourself returning
to it as a reference after passing the exam.

What’s Inside
n Expression Language
n JSP Standard Tag Library (JSTL 1.1)
n Custom tags—‘Classic’ and ‘Simple’
n Session management
n Security
n Design patterns
n Filters
n Example code and the Tomcat servlet container
n All exam objectives, carefully explained
n Review questions and quizlets
n Quick Prep section for last-minute cramming

The authors, Deshmukh, Malavia, and Scarpino, are Sun Certified
Web Component Developers who have written a focused and
practical book thanks to their extensive background in Java/J2EE
design and development. They live, respectively, in Iselin, New
Jersey, Ardsley, New York, and Austin, Texas.

www.manning.com/deshmukh2

Ask the Authors Ebook edition

AUTHOR
4

ONLINE

4

www.manning.com/deshmukh2

	contents
	preface to the second edition
	preface to the first edition
	acknowledgments
	about the Sun certification exams
	about this book
	about the authors
	about the cover illustration
	Part 1 - Getting started
	Understanding Java servlets
	1.1 What is a servlet?
	1.1.1 Server responsibilities
	1.1.2 Server extensions

	1.2 What is a servlet container?
	1.2.1 The big picture
	1.2.2 Understanding servlet containers
	1.2.3 Using Tomcat

	1.3 Hello World servlet
	1.3.1 The code
	1.3.2 Compilation
	1.3.3 Deployment
	1.3.4 Execution

	1.4 The relationship between a servlet container and the Servlet API
	1.4.1 The javax.servlet package
	1.4.2 The javax.servlet.http package
	1.4.3 Advantages and disadvantages of the Servlet API

	1.5 Summary

	Understanding JavaServer Pages
	2.1 What is a JSP page?
	2.1.1 Server-side includes

	2.2 Hello User
	2.2.1 The HTML code
	2.2.2 The servlet code
	2.2.3 The JSP code

	2.3 Servlet or JSP?
	2.4 JSP architecture models
	2.4.1 The Model 1 architecture
	2.4.2 The Model 2 architecture

	2.5 A note about JSP syntax
	2.6 Summary

	Web application and HTTP basics
	3.1 What is a web application?
	3.1.1 Active and passive resources
	3.1.2 Web applications and the web application server

	3.2 Understanding the HTTP protocol
	3.2.1 HTTP basics
	3.2.2 The structure of an HTTP request
	3.2.3 The structure of an HTTP response

	3.3 Summary

	Part 2 - Servlets
	The servlet model
	4.1 Sending requests: Web browsers and HTTP methods
	4.1.1 Comparing HTTP methods

	4.2 Handling HTTP requests in an HttpServlet
	4.3 Analyzing the request
	4.3.1 Understanding ServletRequest
	4.3.2 Understanding HttpServletRequest

	4.4 Sending the response
	4.4.1 Understanding ServletResponse
	4.4.2 Understanding HttpServletResponse

	4.5 Servlet life cycle
	4.5.1 Loading and instantiating a servlet
	4.5.2 Initializing a servlet
	4.5.3 Servicing client requests
	4.5.4 Destroying a servlet
	4.5.5 Unloading a servlet
	4.5.6 Servlet state transition from the servlet container’s perspective

	4.6 ServletConfig: a closer look
	4.6.1 ServletConfig methods
	4.6.2 Example: a servlet and its deployment descriptor

	4.7 ServletContext: a closer look
	4.8 Beyond servlet basics
	4.8.1 Sharing the data (attribute scopes)
	4.8.2 Coordinating servlets using RequestDispatcher
	4.8.3 Accessing request-scoped attributes with RequestDispatcher
	4.8.4 Putting it all together: A simple banking application

	4.9 Summary
	4.10 Review questions

	Structure and deployment
	5.1 Directory structure of a web application
	5.1.1 Understanding the document root directory
	5.1.2 Understanding the WEB-INF directory
	5.1.3 The web archive (WAR) file
	5.1.4 Resource files and HTML access
	5.1.5 The default web application

	5.2 The deployment descriptor: an overview
	5.2.1 Example: A simple deployment descriptor
	5.2.2 Using the <servlet> element
	5.2.3 Using the <servlet-mapping> element
	5.2.4 Mapping a URL to a servlet

	5.3 Summary
	5.4 Review questions

	The servlet container model
	6.1 Initializing ServletContext
	6.2 Adding and listening to scope attributes
	6.2.1 Adding and removing scope attributes
	6.2.2 Listening to attribute events

	6.3 Servlet life-cycle events and listeners
	6.3.1 javax.servlet.ServletContextListener
	6.3.2 javax.servlet.Http.HttpSessionListener
	6.3.3 javax.servlet.Http.HttpServletRequestListener

	6.4 Adding listeners in the deployment descriptor
	6.5 Web applications in a distributed environment
	6.5.1 Behavior of a ServletContext
	6.5.2 Behavior of an HttpSession

	6.6 Summary
	6.7 Review questions

	Using filters
	7.1 What is a filter?
	7.1.1 How filtering works
	7.1.2 Uses of filters
	7.1.3 The Hello World filter

	7.2 The Filter API
	7.2.1 The Filter interface
	7.2.2 The FilterConfig interface
	7.2.3 The FilterChain interface
	7.2.4 The request and response wrapper classes

	7.3 Configuring a filter
	7.3.1 The <filter> element
	7.3.2 The <filter-mapping> element
	7.3.3 Configuring a filter chain

	7.4 Advanced features
	7.4.1 Using the request and response wrappers
	7.4.2 Important points to remember about filters
	7.4.3 Using filters with MVC

	7.5 Summary
	7.6 Review questions

	Session management
	8.1 Understanding state and sessions
	8.2 Using HttpSession
	8.2.1 Working with an HttpSession
	8.2.2 Handling session events with listener interfaces
	8.2.3 Invalidating a Session

	8.3 Understanding session timeout
	8.4 Implementing session support
	8.4.1 Supporting sessions using cookies
	8.4.2 Supporting sessions using URL rewriting

	8.5 Summary
	8.6 Review questions

	Developing secure web applications
	9.1 Basic concepts
	9.1.1 Authentication
	9.1.2 Authorization
	9.1.3 Data integrity
	9.1.4 Confidentiality or data privacy
	9.1.5 Auditing
	9.1.6 Malicious code
	9.1.7 Web site attacks

	9.2 Understanding authentication mechanisms
	9.2.1 HTTP Basic authentication
	9.2.2 HTTP Digest authentication
	9.2.3 HTTPS Client authentication
	9.2.4 FORM-based authentication
	9.2.5 Defining authentication mechanisms for web applications

	9.3 Securing web applications declaratively
	9.3.1 display-name
	9.3.2 web-resource-collection
	9.3.3 auth-constraint
	9.3.4 user-data-constraint
	9.3.5 Putting it all together

	9.4 Securing web applications programmatically
	9.5 Summary
	9.6 Review questions

	Part 3 - JavaServer Pages and Design Patterns
	The JSP technology model-the basics
	10.1 SP syntax elements
	10.1.1 Directives
	10.1.2 Declarations
	10.1.3 Scriptlets
	10.1.4 Expressions
	10.1.5 Actions
	10.1.6 Comments

	10.2 The JSP page life cycle
	10.2.1 JSP pages are servlets
	10.2.2 Understanding translation units
	10.2.3 JSP life-cycle phases
	10.2.4 JSP life-cycle example

	10.3 Understanding JSP page directive attributes
	10.3.1 The import attribute
	10.3.2 The session attribute
	10.3.3 The errorPage and isErrorPage attributes
	10.3.4 The language and extends attributes
	10.3.5 The buffer and autoFlush attributes
	10.3.6 The info attribute
	10.3.7 The contentType and pageEncoding attributes

	10.4 Summary
	10.5 Review questions

	The JSP technology model-advanced topics
	11.1 Understanding the translation process
	11.1.1 Using scripting elements
	11.1.2 Using conditional and iterative statements
	11.1.3 Using request-time attribute expressions
	11.1.4 Using escape sequences

	11.2 Understanding JSP implicit variables and JSP implicit objects
	11.2.1 application
	11.2.2 session
	11.2.3 request and response
	11.2.4 page
	11.2.5 pageContext
	11.2.6 out
	11.2.7 config
	11.2.8 exception

	11.3 Understanding JSP page scopes
	11.3.1 Application scope
	11.3.2 Session scope
	11.3.3 Request scope
	11.3.4 Page scope

	11.4 JSP pages as XML documents
	11.4.1 The root element
	11.4.2 Directives and scripting elements
	11.4.3 Text, comments, and actions

	11.5 Summary
	11.6 Review questions

	Reusable web components
	12.1 Static inclusion
	12.1.1 Accessing variables from the included page
	12.1.2 Implications of static inclusion

	12.2 Dynamic inclusion
	12.2.1 Using jsp:include
	12.2.2 Using jsp:forward
	12.2.3 Passing parameters to dynamically included components
	12.2.4 Sharing objects with dynamically included components

	12.3 Summary
	12.4 Review questions

	Creating JSPs with the Expression Language (EL)
	13.1 Understanding the Expression Language
	13.1.1 EL expressions and JSP script expressions
	13.1.2 Using implicit variables in EL expressions

	13.2 Using EL operators
	13.2.1 EL operators for property and collection access
	13.2.2 EL arithmetic operators
	13.2.3 EL relational and logical operators

	13.3 Incorporating functions with EL
	13.3.1 Creating the static methods
	13.3.2 Creating a tag library descriptor (TLD)
	13.3.3 Modifying the deployment descriptor
	13.3.4 Accessing EL functions within a JSP

	13.4 Summary
	13.5 Review questions

	Using JavaBeans
	14.1 JavaBeans: a brief overview
	14.1.1 JavaBeans from the JSP perspective
	14.1.2 The JavaBean advantage
	14.1.3 Serialized JavaBeans

	14.2 Using JavaBeans with JSP actions
	14.2.1 Declaring JavaBeans using <jsp:useBean>
	14.2.2 Mutating properties using <jsp:setProperty>
	14.2.3 Accessing properties using <jsp:getProperty>

	14.3 JavaBeans in servlets
	14.4 Accessing JavaBeans from scripting elements
	14.5 More about properties in JavaBeans
	14.5.1 Using nonstring data type properties
	14.5.2 Using indexed properties

	14.6 Summary
	14.7 Review questions

	Using custom tags
	15.1 Getting started
	15.1.1 New terms
	15.1.2 Understanding tag libraries

	15.2 Informing the JSP engine about a custom tag library
	15.2.1 Location of a TLD file
	15.2.2 Associating URIs with TLD file locations
	15.2.3 Understanding explicit mapping
	15.2.4 Resolving URIs to TLD file locations
	15.2.5 Understanding the prefix

	15.3 Using custom tags in JSP pages
	15.3.1 Empty tags
	15.3.2 Tags with attributes
	15.3.3 Tags with JSP code
	15.3.4 Tags with nested custom tags

	15.4 Using the JSP Standard Tag Library (JSTL)
	15.4.1 Acquiring and installing the JSTL
	15.4.2 General purpose JSTL tags: <c:catch> and <c:out>
	15.4.3 Variable support JSTL tags: <c:set> and <c:remove>
	15.4.4 Flow control JSTL: <c:if>, <c:choose>, <c:forEach>, and <c:forTokens>

	15.5 Summary
	15.6 Review questions

	Developing “classic” custom tag libraries
	16.1 Understanding the tag library descriptor
	16.1.1 The <taglib> element
	16.1.2 The <tag> element
	16.1.3 The <attribute> element
	16.1.4 The <body-content> element

	16.2 The Tag Extension API
	16.3 Implementing the Tag interface
	16.3.1 Understanding the methods of the Tag interface
	16.3.2 An empty tag that prints HTML text
	16.3.3 An empty tag that accepts an attribute
	16.3.4 A nonempty tag that includes its body content

	16.4 Implementing the IterationTag interface
	16.4.1 Understanding the IterationTag methods
	16.4.2 A simple iterative tag

	16.5 Implementing the BodyTag interface
	16.5.1 Understanding the methods of BodyTag
	16.5.2 A tag that processes its body

	16.6 Extending TagSupport and BodyTagSupport
	16.6.1 The TagSupport class
	16.6.2 The BodyTagSupport class
	16.6.3 Accessing implicit objects
	16.6.4 Writing cooperative tags

	16.7 What’s more?
	16.8 Summary
	16.9 Review questions

	Developing “Simple” custom tag libraries
	17.1 Understanding SimpleTags
	17.1.1 A brief example
	17.1.2 Exploring SimpleTag and SimpleTagSupport

	17.2 Incorporating SimpleTags in JSPs
	17.2.1 Coding empty SimpleTags
	17.2.2 Adding dynamic attributes to SimpleTags
	17.2.3 Processing body content inside SimpleTags

	17.3 Creating Java-free libraries with tag files
	17.3.1 Introducing tag files
	17.3.2 Tag files and TLDs
	17.3.3 Controlling tag processing with tag file directives
	17.3.4 Processing fragments and body content with tag file actions

	17.4 Summary
	17.5 Review questions

	Design patterns
	18.1 Design patterns: a brief history
	18.1.1 The civil engineering patterns
	18.1.2 The Gang of Four patterns
	18.1.3 The distributed design patterns
	18.1.4 The J2EE patterns

	18.2 Patterns for the SCWCD exam
	18.2.1 The pattern template
	18.2.2 The Intercepting Filter
	18.2.3 Model-View-Controller (MVC)
	18.2.4 Front Controller
	18.2.5 Service Locator
	18.2.6 Business Delegate
	18.2.7 Transfer Object

	18.3 Summary
	18.4 Review questions

	Installing Tomcat 5.0.25
	A.1 Prerequisites
	A.2 Getting Tomcat
	A.3 Installation
	A.3.1 Extracting files
	A.3.2 Setting environment variables

	A.4 Directory Structure
	A.5 Running Tomcat
	A.6 Creating a new web application
	A.7 Security

	A sample web.xml file
	Review Q & A
	Exam Quick Prep
	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

